1.ARIMA(0,1,0) = random walk: 当d=1,p和q为0时,叫做random walk,如图所示,每一个时刻的位置,只与上一时刻的位置有关。 预测公式如下: 2. ARIMA(1,0,0) = first-order autoregressive model: p=1, d=0,q=0。说明时序数据是稳定的和自相关的。一个时刻...
1.ARIMA(0,1,0) = random walk: 当d=1,p和q为0时,叫做random walk,每一个时刻的位置,只与上一时刻的位置有关。预测公式:Yt=μ+Yt−1 2.1 主要应用场合 平稳非白噪声的序列 2.2白噪声检查 lb=acorr_ljungbox(data.diff1.dropna(), lags = [i for i in range(1,12)],boxpierce=True) LB检验...
MA模型的阶数表示考虑过去的预测误差的数量,例如MA(1)表示只考虑一个过去的预测误差。 解释一下上述这段定义: 均值稳定:时间序列的均值或期望值是恒定的,不随时间变化。这就是公式中的μ项,它对所有时间点都是相同的。这也是为什么会说“时间序列应该是围绕着某个均值上下波动的序列”。在许多实际的时间序列...
1、AR部分(即 φ_1Y_{t-1} + φ_2Y_{t-2} + ... + φ_pY_{t-p} )表示当前值 Y_t 与它过去的值有关,这个部分的形式与AR模型的公式一致。 2、MA部分(即 θ_1\epsilon_{t-1} + θ_2\epsilon_{t-2} + ... + θ_q\epsilon_{t-q} )表示当前值 Y_t 与它过去的误差项有关,...
模型的一般形式如下式所示:数据序列是平稳的,这意味着均值和方差不应随时间而变化。通过对数变换或差分可以使序列平稳。输入的数据必须是单变量序列,因为ARIMA利用过去的数值来预测未来的数值。AR(自回归项)、I(差分项)和MA(移动平均项):AR项是指用于预测下一个值的过去值。AR项由ARIMA中的参数p定义。p值是...
should_diff(sales_data) #结果表明不平稳,提示我们需要引入差分项 (0.01, False) # step3,划分训练集和测试集 train = sales_data[:60] test = sales_data[60:] # step4,拟合模型 arima_model = auto_arima(train, start_p=0, d=1,start_q=0, max_p=5,max_d=5,max_q=5, start_P=0, D=...
一、ARIMA模型(整个周期) 1.数据预处理 前期对于数据的预处理过程不再赘述,处理之后的数据类型如图所示: 2.展示时序图 AI检测代码解析 from __future__ import print_function import pandas as pd import numpy as np from scipy import stats import matplotlib.pyplot as plt ...
确定ARIMA模型的p、d、q值是关键的一步,可以通过以下步骤进行: 确定d值(差分次数):通过平稳性检验(ADF检验)或观察时间序列的自相关图(ACF图)和偏自相关图(PACF图)来判断。若序列非平稳,则进行差分处理,直至序列平稳。 确定p值(自回归阶数):通过观察偏自相关函数(PACF)图来确定。若PACF图在某个滞后阶数上截尾...
d=1,q=p=0,arima(0,1,0)该模型是随机游走模型(醉汉模型)x(t)=x(t-1)+ξ(t)E(ξ(t))=0,var(ξ(t))=σ^2,E(ξ(t)ξ(s))=0,s不等于t E(x(s)ξ(t))=0,任意s<t,