an/bn=S(2n-1)/T(2n-1)证明过程:设等差数列{an},前n项和Sn,等差数列{bn},前n项和Tn。an/bn ={[a1+a(2n-1)]/2}/{[b1+b(2n-1)]/2} (等差中项性质)={[a1+a(2n-1)](2n-1)/2}/{[b1+b(2n-1)](2n-1)/2} (分子分母同乘以2n-1)=S(2n-1)/T(2n-1) (...
=>an/bn=(4n+1)/(6n+2)=>a1/b1=5/8
分析:(1)因为k=7,所以a1,a3,a7成等比数列,又an是公差d≠0的等差数列,利用等差数列的通项公式及等比数列的定义可以得到an=a1+(n-1)d=n+1,bn=b1×qn-1=2n,(i)用错位相减法可求得anbn的前n项和为Tn=n×2n+1;(ii)因为新的数列{cn }的前2n-n-1项和为数列an的前2n-1项的和减去数列bn前n项的...
=>an/bn=(4n+1)/(6n+2)=>a1/b1=5/8 Sn,TN都为等差数列,在比值上下同乘kn,又因sn,tn通项为na1+n(n-1)/2*d所以对因找a1.b1k消去就可以了,,