证明如下:e^x~x lim(x→0)(a^x-1)/xlna=lim(x→0)(e^xlna-1)/xlna 设t=xlna 当x→0,t→0 所以原式=lim(t→0)e^t-1/t=t-1/t=1 所以a^x-1的等价无穷小是xlna 等价无穷小的意义:等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不一定...