相似。存在可逆阵P使PA=B,则P(kE+A)=(kE+B),故相似。相似,指相类、相像的意思。语出《易·系辞上》:与天地相似,故不违。学科上解释为如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。
一般结论是,若A与B相似,则A+kE与B+kE相似,其中E是单位阵。但A+C并不一定相似于B+C。下面就是一个反例:A=diag(1,2)(对角阵),B=diag(2,1),则A与B相似。令C=diag(2,3),则A+C=diag(3,5)与B+C=diag(4,4)不相似。
这里可能是矩阵等价,又可能是矩阵相似,不过这一题应该是矩阵相似A~B,=>A+kE~B+kE,这个结论是...
若矩阵 A 与 B 相似,则 kE-A 与 kE-B 相似A.正确B.错误的答案是什么.用刷刷题APP,拍照搜索答疑.刷刷题(shuashuati.com)是专业的大学职业搜题找答案,刷题练习的工具.一键将文档转化为在线题库手机刷题,以提高学习效率,是学习的生产力工具
若矩阵A与矩阵kE相似,则A=?答:A=kE.因为A与kE相似,所以存在可逆矩阵P使得P^(-1)AP=kE.即A=P(kE)P^(-1)=(kE)PP^(-1)=kE.这里要用到纯量矩阵和任何矩阵可交换的性质.若n阶方阵A与B相似,且A2=A,则B2=?答:B2=B.因为A与B相似,则存在可逆矩阵P使得P^(-1)AP=B.所以B2=(P^(-1)AP)(...
矩阵可逆的判断条件: 1 秩等于行数 2 行列式不为0 3 行向量(或列向量)是线性无关组 4 存在一个矩阵,与它的乘积是单位阵 能想到的就这些了 绞尽脑汁,想~~ 5 作为线性方程组的系数有唯一解 6 满秩 7 可以经过初等行变换化为单位矩阵 8 伴随矩阵可逆 9 可以表示成初等矩阵的乘积 10 它的转置可逆 11 ...
1.A 2.B 3.C 4.B 5.A 本题考查元音发音。 1. "cake" 中的 "a" 发音与 "bake" 中的 "a" 相同,都为 /eɪ/。 2. "like" 中的 "i" 发音与 "five" 中的 "i" 相同,都为 /aɪ/。 3. "big" 中的 "i" 发音与 "fish" 中的 "i" 相同,都为 /ɪ/。 4. "nose" 中...
A与B相似,则存在可逆矩阵T,使得A=T^{-1}BT 从而 kE+A =kT^{-1}ET+T^{-1}BT =T^{-1}(kE+B)T 所以kE+A与kE+B相似
十三、选出划线部分读音与所给单词划线部分读音相同的单词,填序号。()1. b___ke A。th___nk B。p___cture A. l___ke B. s___t( )2。___o C. ___ere B。___at D. ___ileD。___ose( )3。your___ E. ye___ F. ___it C。hi___D。bu___()4.___ese G. ___ank ...