这个公式叫做二项式定理,右边的多项式叫做(a+b)n的二次展开式,其中的系数cnr(r=0,1,……n)叫做二次项系数,式中的cnran-rbr.叫做二项展开式的通项,用tr+1表示,即通项为展开式的第r+1项:tr+1=cnraa-rbr.说明①tr+1=cnraa-rbr是(a+b)n的展开式的第r+1项.r=0,1,2,……n.它和(b+a)n的...
要表示(a b)的n次方展开式的系数,可以通过杨辉三角或二项式定理。展开式如下:a的n次方 + C(1,n)*a的n-1次方*b的1次方 + C(2,n)*a的n-2次方*b的2次方 + ... + C(n-1,n)*a的1次方*b的n-1次方 + a*b的n次方。这里,C(k,n)表示组合数,即从n个不同元素中取出k个元素...
(a+b)^n = ∑(k=0 to n) (nCk) a^(n-k) b^k,其中nCk表示从n个元素中选取k个元素的组合数。 (a+b
二项式定理,也被称为的n次方展开公式,表述为:^n = a^n + Ca^b + Ca^b^2 + ... + Ca^b^i + ... + b^n。其中,C表示组合数,即从n个不同元素中选取i个元素的组合数目。详细解释如下:二项式定理是数学中用来展开的n次方的一种通用公式。该公式基于组合数学中的组合数概念,描述...
多项式的n次方展开公式,如下图所示:其中二项式定理如下图所示:二项式定理 二项式定理(英语:Binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
二次项定理:(a+b)^n=Cn0an+Cn1an-1b1+…+Cnran-rbr+…+Cnnbn(n∈N*)。这个公式叫做(a+b)n的二次展开式,其中的系数Cnr(r=0,1,……n)叫做二次项系数,式中的Cnran-rbr,叫做二项展开式的通项,用Tr+1表示,即通项为展开式的第r+1项:Tr+1=Cnraa-rbr。二项式定理最初用于开高次方。...
(a+b)的n次方展开公式揭示了当两个数a和b相乘n次时的数学结构,它是一个重要的数学工具,不仅在微积分的创立中扮演了关键角色,还广泛应用于遗传学等实际领域。具体来说,公式如下:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b^1 + C(n,2)a^(n-2)b^2 + ... + C(n,r)a...
(a+b)的n次方的展开式是:C(n,0)a^nb^0+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+…+C(n,n-1)ab^(n-1)+C(n,n)a^0b^n. 当然你也可以把它写成C(n,0)b^na^0+C(n,1)b^(n-1)a+C(n,2)b^(n-2)a^2+…+C(n,n-1)ba^(n-1)+C(n,n)b^0a^n. ...
的n次方展开式是:二项式定理展开式,具体形式为:^n = Ca^n + Ca^b + Ca^b^2 + … + Ca^b^i + … + Cb^n。其中,C表示组合数,即从n个不同元素中选取i个元素的组合方式数目。该展开式是根据二项式定理得出的,描述了单项式的展开形式。详细解释如下:二项式定理是数学中...
a–b的n次方展开式公式是a^n+a^(n-1)b+...+ab^(n-1)+b^n,初等代数中,二项式是只有两项的多项式,即两个单项式的和,二项式是仅次于单项式的最简单多项式。由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式(例:0可看做0乘a,1可以看做1乘指数为0的字母...