3DGS based SLAM相比传统SLAM最突出的优势是稠密重建和实时渲染,从2024年下半年的研究热点来看:...
且能够快速渲染新的视图,具有许多优点,如增强闭环检测和为机器人任务提供更多数据。
基于3DGS的SLAM不仅全面继承了NeRF-based SLAM方法的优点,而且全面补足了其短板(渲染速度慢、图像质量不高、定位精度欠佳等),实现了更好的实时性、更好的渲染质量、更精确的定位精度。 3DGS的意义? 3DGS 的显式场景表示提供了对场景动态的前所未有的控制,这是涉及复杂几何形状和变化照明条件的复杂场景中的关键因素。
随着神经辐射场(NeRF)和3D高斯分布(3DGS)等新兴3D场景表示方法的广泛应用,SLAM系统在高质量输入数据上的表现得到了显著提升。然而,在实际场景中,摄像机经常因快速运动或低光照条件下的长曝光而产生运动模糊,导致: 定位准确性下降:传统SLAM依赖图像的光度一致性来估计摄像机位姿,而运动模糊破坏了这一假设,使得定位误差...
高斯SLAM。该框架采用了涉及地图构建和优化的管道,创建由单独的3D高斯点云表示的单独的子地图,以防止灾难性遗忘并保持计算效率。 Submaps-based SLAM 在这一类别中,我们专注于解决灾难性遗忘的挑战以及先前讨论的受密集辐射场启发的SLAM系统在大型环境中面临的适用性问题的方法。
2024年11月20日 20:09 原文链接:近期两篇NeRF/3DGS-based SLAM方案赏析:TS-SLAM and MBA-SLAM 更多优质内容,请关注公众号:智驾机器人技术前线分享至 投诉或建议评论 赞与转发0 0 0 0 0 回到旧版 顶部登录哔哩哔哩,高清视频免费看! 更多登录后权益等你解锁...
Hidenobu Matsuki等人提出了首个完全基于3D GS的单目SLAM模型Gaussian Splatting SLAM,利用高斯体为唯一的3D 表示,以3 FPS速度首次实现了基于3D GS的实时增量式重建。同样地,Gaussian-SLAM、Photo-SLAM、NEDS-SLAM等其他工作进一步推动了3D GS-based SLAM的发展。
本门课程从理论和代码实现两方面展开,带你从零入门NeRF/Gaussian Based SLAM的原理学习、论文阅读、代码梳理等。 理论层面,从线性代数入手到传统的计算机图形学,让大家明了现代三维重建的理论基础和源头; 代码层面通过多个练习手把手教会大家复现计算机图形学、NeRF相关工作。