解:(1)正项数列{an},若2an,2Sn,成等差数列,所以,①,当n=1时,a1=2,当n≥2时,,②,①-②得:,整理得an-an-1=2(常数),所以数列{an}是以2为首项,2为公差的等差数列;an=2+2(n-1)=2n.(2)由(1)得:,整理得,所以==1012+253=1265.【思路点拨】(1)直接利用数列的递推关系式求出数列{an...
a1(a1-2)=0 a1=0(舍去)或a1=2 a1=2 (2)n≥2时,4Sn-4S(n-1)=4an=2an+an²-[2a(n-1)+a(n-1)²]an²-a(n-1)²-2an-2a(n-1)=0 [an+a(n-1)][an-a(n-1)-2]=0 数列各项均为正,an+a(n-1)恒>0,因此只有an-a(n-1)-2=0 an-a(...
若正项数列{an}的前n项和为Sn,2Sn=an2+an(n∈N+).(1)求数列{an}的通项公式;(2)令bn=1/(a(a+2)),求数列{bn}的前n项和Tn.
∴an+an?1=an2?an?12,∴an-an-1=1,∴{an}是公差为1的等差数列,由2S1=a12+a1,得a1=1,∴an=1+(n-1)×1=n.(2)bn=2anlog 1 22an=-n?2n,∴Hn=-(1×2+2×22+3×23+…+n×2n),∴2Hn=-(22+2×23+3×24+…+n×2n+1),...
2an= a 2 n− a 2 n−1+an−an−1,∴an2−an−12=an+an−1,∴(an+an-1)(an-an-1-1)=0,∵an+an-1>0,∴an-an-1=1则数列{an}是以1为首项,1为公差的等差数列∴an=a1+(n-1)d=1+(n-1)=n.(Ⅱ)∵ bn= n 2n,∴...
…(12分)∴Tn=(n-1)•2n+1+2.(14分) (1)根据an+1=Sn+1-Sn,得到n≥2时an+1和an关系式即an+1=2an+1,两边同加1得到an+1+1=2(an+1),最后验证n=1时等式也成立,进而证明数列{an+1}是等比数列,并求数列{an}的通项公式;(2)利用错位相减法求数列{nan+n}的前n项和Tn. ...
又2Sn=an2+an,2Sn+1=an+12+an+1,两式相减得:an+1-an=1,所以数列{an}是首项为1,公差为1的等差数列故数列{an}的通项公式为an=n…(6分)(II)由(Ⅰ)得 bn= 2n (2n-1) (2n+1-1)+(-1)nn,记数列{bn}的前2n项和为T2n,则 T2n= 2n k=1 2k (2k-1) (2k+1-1)+(-1+2-3+4-…+...
即an-an-1=1,(n∈N*,n⩾2)所以数列{an}是等差数列.(2)由(1)可得an=2+n-1=n+1,n∈N*,则b_n=((-1))^na_n^2=((-1))^n((n+1))^2,n∈N*,从而b_(2n-1)+b_(2n)=-(2n)^2+(2n+1)^2=4n+1,故T2n=b1+b2+…+b2n-1+b2n(4+1)+(4×2+1)+…+(4n+1)=((5...
数列an的各项均为正数,sn为其前n项,且对任意的n∈n*,均有2an,2sn,an²成等差数列。(1)求a1的值,(2)求数列an的通项公式... 数列an的各项均为正数,sn为其前n项,且对任意的n∈n*,均有2an,2sn,an²成等差数列。 (1)求a1的值,(2)求数列an的通项公式 展开 我来答 1...
当n≥2时,2an=2Sn-2Sn-1=an2+an-an-12-an-1,∴an+an-1=a n 2-an-12=(an+an-1)(an-an-1).∵an+an-1≠0,∴an-an-1=1,∴{an}是以1为首项,以1为公差的等差数列.∴an=n,2Sn=n2+n.∴cn=(-1)n • 2n+1 n2+n=(-1)n( 1 n+ 1 n+1).设cn的前n项和为Tn,则T2017=-...