您好,答案如上图所示哦 您可以看一下上图的总结哦[嘻嘻]
等价无穷小不是说当x..等价无穷小不是说当x趋向于0的时候才能用吗,这里的x趋向1,那么上面那个式子e^xlnx-1怎么可以用等价无穷小啊!!
高等数学中关于等价无穷小的一点思考 彼时年少 高数常见坑点:等价无穷小 云山乱 高等数学微积分之等价无穷小的使用条件 1。等价无穷小的定义:在某一个极限过程,某一个量的极限为零,则这个量称为无穷小量。因此说某一个量是无穷小量首先必须指出在哪一个极限过程,比如当 x\rightarrow 0 时, x^2 是无穷小量...
等价无穷小定义为在x趋近于x时,f(x)与g(x)均为无穷小量,且极限值为1时,称f与g为等价无穷小量。举例来说,limx→0(e^x-1)/x利用洛必达法则,可求得极限值为1,因此可以判定其为等价无穷小。等价无穷小是一种描述无穷小之间关系的概念,即在同一自变量趋近过程中,若两个无穷小之比的极...
因为e^x在x趋近于0时,等价无穷小是x+1 e的-x次方=1/(e的x次方)所以当X趋近0时,1-(e的-x次方)的等价无穷小是1-1/(x+1)=x/(x+1)
~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1 等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除 的元素时,可以用等价无穷小代换,但是作为加减的元素时就不可以。
简单计算一下即可,答案如图所示
x趋于1时,lnx的等价无穷小是x-1。因为lnx的导数是1/x,在x=1时的值是1,lnx=1×(x-1)+o(x),你也可以直接求lnx/(x-1)在x趋于1时候的极限是1。极限思想的思维功能 极限思想在现代数学乃至物理学等学科中,有着广泛的应用,这是由它本身固有的思维功能所决定的。极限思想揭示了变量与常量...
等于lim e^x/1=1;所以为等价无穷小 。泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:...
为了证明ex 与 x 是等价无穷小,我们需要证明它们满足等价无穷小的定义。即当 x 趋于 0 时,ex 与 x 的比值极限为 1。 证明过程如下: lim (ex/x) = lim (e^x / x) 当x 趋于 0 时,分子 e^x 趋于 1,分母 x 也趋于 0。因此,它们的比值极限为 1。即: lim (ex/x) = 1 所以,ex 与 x 是...