为啥ln(1-x)不..。。泰勒公式乘法天下第一先写勿问唉。重要极限千篇一律取对数类似题库。整体法等价无穷小逆向思维双向思维。恒等式π=exp(Lnπ)。number-empire也是一个计算器***。#HLWRC高数#:不要被
(1+1/x)∧x和e是不等的,不管x取多大,它俩始终相差一个无穷小。当x取得越大时,(1+1/x)∧x与e的差值越小,看起来差不多。但是,(1+1/x)∧x也是要取x次方的,其累计的误差也越大,与e∧x就不是等价无穷大。总之,x越大,(1+1/x)∧x的x次方的累积误差也越大,虽然(1+1/x)∧x和e越来越接近。
如图
微积分学习笔记1:等价无穷小替代 微积分学习笔记1:等价无穷小替代编辑于 2024-07-07 23:46・IP 属地江西 内容所属专栏 微积分学习笔记 系统学习微积分的地方。 订阅专栏 高等数学 高等数学 (大学课程) 微积分 赞同809 条评论 分享喜欢收藏申请转载 ...
所以,当x趋近于1时,无穷小1-x和1-x³同阶。因为 lim(x→1)1/2(1-x^2)/(1-x)=lim(x→1)1/2(1-x)(1+x)/(1-x)=lim(x→1)1/2(1+x)=1/2×2 =1 所以,无穷小1-x和(1/2)(1-x²)同阶且等价。两个无穷小相比求极限,若极限等于1,则它们...
xdm红圈这个不能直..27岁才in信念感开窍:极限存在必单一!缺项=缺斤少两,in省略号代替佩亚诺余项+更高阶等价无穷小量(必斤斤计较jiou)...绝大部分拉格朗日中值定理只有一阶o(x),十年易错题泰勒公式不过是纯运算
x趋近0时,(1+x)的n次方和什么是等价无穷小 只看楼主 收藏 回复 迪尔马奇李 实数 1 x趋近0时,(1+x)的n次方和什么是等价无穷小 芬 测度论 14 这个就不是无穷小,怎么会有等价无穷小呢? Soma-君 L积分 15 (1+x)^α-1~αx这里-1要注意...
x-无穷:由于x趋于无穷,1/x趋于0,ln(1+1/x)~1/x(等价无穷小),因此原式=e^lim=e。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时...
高数等价无穷小问题~当x→0时,(1+x)的x次方 (1+x)请大虾们帮忙证明. 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析解答一 举报 只需证明((1+x)^x)/(1+x)趋于1(当x→0时)即(1+x)^{x-1}趋于1我们知道一个重要极限:(1+x)^{1/x}趋于e(当x→0时)所以(1+x)^{x-1}=(1+x...
1+1/x的x次方的极限是1。具体回答如下:(1+1/x)=e^(xln(1+1/x),只需求limxln(1+1/x)=limln(1+1/x)/(1/x),用洛必达法则,等于上下分别求导再求极限,结果为0,所以原式极限为1。极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,...