An=(n+1)/2 (n为奇数)
1/n,n=1,2,4,5……就是这样呀
(an -1/2)/[a(n-1) -1/2]=3,为定值。a1 -1/2=1-1/2=1/2 数列{an -1/2}是以1/2为首项,3为公比的等比数列。an -1/2=(1/2)×3^(n-1)an=(1/2)[1+3^(n-1)]数列的通项公式为an=(1/2)[1+3^(n-1)]...
呵呵,如果题目完整的话那么很显然该数列只到1/5而已,所以通项公式应为an=1/(n+1) (1≤n≤4)
n=[(2n-1)+1]/2 数列2:序号为2X1,2X2,2X3...2n 数列本身为自然数列1,2,3,4,5...n n=2n/2 观察两个数列的通项公式,发现它们相同的地方是(2n-1)/2和2n/2 因为2n-1和2n分别是这两个数列的序号,所以可以综合成n/2 不同的地方是分子部分,一个加1,一个加0 所以抽得一个...
1. 通项式为an = n (例:1 2 3 4 5 6 7 8 ...)2. 通项式为an = an-1 + an-2 (n>=3; a1=1,a2=2)(例:1 2 3 5 8 13 ... )(其中 3=2+1;5=2+3;8=5+3...)3. 通项式为an = a1 + a2 + .. + an-1 - n + 3 (n>=2; a1=1)(例...
观察规律,第n项分子是1,分母为n,偶数项的符号为负。因此,通项式为:A(n) = (-1)^(n+1) / n 书写格式如下图:
an=[(n+2)/3],其中[]是取整符号,不超过实数x的最大整数称为x的整数部分,记作[x]。
An=2.5-SIN((2n-1)/4)×(COS((2n-1)/4)+2^0.5)由SIN((2n-1)/4)得出(1/2)^0.5,(1/2)^0.5,-(1/2)^0.5,-(1/2)^0.5 由COS((2n-1)/4)+2^0.5得出3/2×2^0.5,1/2×2^0.5,1/2×2^0.5,3/2×2^0.5 相乘得1.5,0.5,-0.5,-1.5 用2.5减去的...
你自己看看,奇数项是1.3.5...偶数项是1/2,1/4,1/6...即a2n-1=2n-1 a2n=1/2n