1/根号下(x^2+1)的不定积分解答过程如下:其中运用到了换元法,其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。
根号下x2+1的不定积分是(1/2)[x√(x+1)+ln|x+√(x+1)|]+C。∫√(x²+1) dx =x√(x²+1)-∫xd[√(x²+1)]=x√(x²+1)-∫[x²/√(x²+1)]dx =x√(x²+1)-∫[(x²+1)/√(x²+1)]dx+∫[1/√(x²...
根号1+x2分之一的积分为(x/2)√(x^2 +1)+(1/2)ln[x+√(x^2 +1)+C。具体步骤如下:∫ √(x^2 +1)dx=x√(x^2 +1)-∫ x^2dx/√(x^2 +1)=x√(x^2 +1)-∫ (x^2+1-1)dx/√(x^2 +1)=x√(x^2 +1)-∫ √(x^2+1)dx+∫ dx/√(x^2 +1)=x√(x^...
1/根号下(x^2+1)的不定积分 求不定积分的方法:第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)分部积分,就那固定的几种类型,无非就是三角函数乘...
1、换元积分法 (1)第一类换元法(即凑微分法) 通过凑微分,最后依托于某个积分公式。进而求得原不定积分。 例:∫cos3xdx=1/3∫cos3xd(3x)=1/3sin3x+C 直接利用积分公式求出不定积分。 (2)三角换元法 通过三角函数之间的相互关系,进行三角换元,把元积分转换为三角函数的积分。
积分如下图:
根号下 (1 + x^2) 分之一的积分可以表示为:∫(1/√(1 + x^2)) dx 这是一个常见的积分形式,也被称为反正弦积分。为了求解这个积分,可以进行变量替换。令 x = tanθ,其中 θ 是一个新的变量。则 dx = sec^2θ dθ,并且 1 + x^2 = 1 + tan^2θ = sec^2θ。将这些替换...
换元法,利用三角代换求定积分的值,过程如下图:
先设x=tant 那么dx=sect^2dt 原式可以改写为∫根号(1+tant^2)sectdt =∫sect*sect^2dt 设u=sect,dv=sect^2dt 于是 上式等于sect*tant-∫sect*tant^2dt=sect*tant-∫sect(sect^2-1)dt=sect*tant-∫sect^3dt+∫sectdt=sect*tant+ln|sect+tant|+c(常数)移项得2∫sect^3dt=sect*tant...
如图所示