+n×n=n(n+1)(2n+1)/6 来历是:用完全立方公式和等差数列求和公式推导 因为:(n+1)^3=n^3+3n^2+3n+1 在这个等式中,让依次取从1开始的n个连续的自然数,就得到n个相对应的等式,2^3=1^3+3×1^2+3×1+1 3^3=2^3+3×2^2+3×2+1 4^3=3^3+3×3^2+3×3+1 ……… (n+1)^3=...
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 .n^3-(n-1)^3=2*n^2... ...
由于1+2+3+...+n=(n+1)n/2, 代人上式得: n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n 整理后得: 1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6 分析总结。 1平方2平方3平方n平方怎么求和啊请详述结果一 题目 数列求和问题1平方,2平方,3平方~n平方,怎么求和啊,请详述...
1^2=1,2^2=4,3^2=9,4^2=16 5^2=25,6^2=36,7^2=49,8^2=64 9^2=81,10^2=100 余下部分见下图:
4.2 推导过程 - 从定义出发,3的平方即为9。 4.3 深入探讨 - 3的平方的推导过程依然是直接的乘法运算,即3乘以3得到9。这个示例也有助于我们更好地掌握平方的规律性。 5. 总结和回顾 通过对1平方、2平方和3平方的公式推导过程的深入探讨,我们可以发现其实质是对数学运算规则的应用和理解。平方的推导过程严谨而...
n²=n(n+1)(2n+1)/6。 平方和公式是一个比较常用公式,用于求连续自然数的平方和,其和又可称为四角锥数,或金字塔数也就是正方形数的级数。公式具体推导过程如下: 1²+2²+3²+4²+……+n² =1*(2-1)+……n*(n+1-1) =1*2+2*3+……+n(n+1)-(1+2+……+n) =2*...
解答过程如下:设S=1^2+2^2+...+n^2 (n+1)^3-n^3 = 3n^2+3n+1 n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1 ...2^3-1^3 = 3*1^2+3*1+1 把上面n个式子相加得:(n+1)^3-1 = 3* [1^2+2^2+...+n^2] +3*[1+2+...+n] +n 所以S= (1/3)*[(n+1...
从1的平方一直加到N的平方的和可以表示为:1^2 + 2^2 + 3^2 + ... + N^2 这个和可以用以下公式计算:N(N+1)(2N+1)/6 所以,从1的平方一直加到N的平方的和等于N(N+1)(2N+1)/6。
解答:在线数学帮助你!!!这是一个计算平方公式:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 因此有:n=10 那么:10X(10+1)(20+1)/6=385;但愿对你有帮助!!!祝你学习愉快!!