解析 ∫1/tanx dx=∫cosx/sinx dx=∫1/sinx dsinx=ln|sinx|+C结果一 题目 求1/tanx的不定积分 答案 ∫1/tanx dx =∫cosx/sinx dx =∫1/sinx dsinx =ln|sinx|+C 结果二 题目 求1/tanx的不定积分 答案 ∫1/tanx dx=∫cosx/sinx dx=∫1/sinx dsinx=ln|sinx|+C 结果三 题目 求1/...
解析 ∫ 1/tanx dx=∫ cosx/sinx dx(令u = sinx,du = cosx dx)=∫ cosx/u * du/cosx=∫ (1/u) du= ln|u| + C= ln|sinx| + C___凑微分法:∫ 1/tanx dx=∫ cosx/sinx dx=∫ (1/sinx) d(sinx)= ln|sinx| + C反馈 收藏 ...
解答一 举报 ∫1/tanx dx=∫cosx/sinx dx=∫1/sinx dsinx=ln|sinx|+C 解析看不懂?免费查看同类题视频解析查看解答 相似问题 请问1/(1+tanx)的不定积分怎么求? 求tanx的不定积分 求1/1+tanx的不定积分 特别推荐 热点考点 2022年高考真题试卷汇总 2022年高中期中试卷汇总 2022年高中期末试卷汇总 2022...
解析 ∫ 1/tanx dx= ∫ cosx/sinx dx(令u = sinx,du = cosx dx)= ∫ cosx/u * du/cosx= ∫ (1/u) du= ln|u| + C= ln|sinx| + C___凑微分法:∫ 1/tanx dx= ∫ cosx/sinx dx= ∫ (1/sinx) d(sinx)=...反馈 收藏
在求解1/tanx的积分时,我们实际上是在求解cotx的积分。由于cotx是一个较为特殊的函数,其积分并不能直接通过基本的积分公式得出,需要运用一定的积分技巧和转换方法。 积分的基本概念和性质 积分是数学中的一个重要概念,它描述了函数在某个区间上的累积效果。积分可以分为定积分和不定积分...
即tanB=AC/BC。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。在Rt△ABC中,如果锐角A确定,那么角A的对边与邻边的比值随之确定,这个比叫做角A的正切,记作tanA。即:tanA=∠A的对边/∠A的邻边。
∫1/tanxdx=∫cosx/sinxdx=∫1/sinxdsinx=ln|sinx|+C,所以1/tanx的不定积分就是“ln|sinx|+C”。根据不定积分的定义可以得知,求函数f(x)的不定积分就是要求出f(x)所有的原函数,而且由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分...
tanx分之一的积分为ln|sinx|+C。 1/tanx dx = cosx / sinx dx = 1/sinx d(sinx) = ln|sinx|+C。 勒贝格积分 勒贝格积分的出现源于概率论等理论中对更为不规则的函数的处理需要。黎曼积分无法处理这些函数的积分问题。因此,需要更为广义上的积分概念,使得更多的函数能够定义积分。 同时,对于黎曼可积的...
散人 tanx系数变了之后就没有这么巧了吧 2023-03-26·河北 回复喜欢 打开知乎App 在「我的页」右上角打开扫一扫 其他扫码方式:微信 下载知乎App 开通机构号 无障碍模式 验证码登录 密码登录 中国+86 其他方式登录 未注册手机验证后自动登录,注册即代表同意《知乎协议》《隐私保护指引》...
当x趋于0时,1/tanx的极限是?如果是(1/6)/tanx的极限呢? 答案 x→0-,1/tanx→-∞,当x→0+,1/tanx→+∞ 分子变成1/6结果不变 结果二 题目 当x趋于0时,1/tanx的极限是?如果是(1/6)/tanx的极限呢? 答案 x→0-,1/tanx→-∞,当x→0+,1/tanx→+∞分子变成1/6结果不变相关推荐 1 当x...