[变式训练](1)正弦函数是奇函数, f(x)=sinx^2 是正弦函数,所以 f(x)=sinx^2 是奇函数,以上“三段论”中的是错误的(2)把推理“因为△ABC三边的长为3,4,5,所以△ABC是直角三角形”写成“三段论”的形式 答案 [变式训练]解析:(1)由于 f(x)=sinx^2 不是正弦函数所以推理中小前提错误答案:小前提相...
知识点五正弦函数、余弦函数的奇偶性与对称性1.奇偶性 y=sinx(x∈R) 为奇函数 y=cosx(x∈R) 为偶函数.2.对称性:正弦函数 y=sinx(x∈R) 的图象关于原点0对称,对称中心是(kπ,0)(k∈acksim△∼△acksim△acksim△acksim△acksim△acksim△∼称中心是kπ+π/(2),0)(k∈Z) (k∈...
【解析】【答案】(1)偶函数;(2)偶函数;(3)奇函数;(4)既不是奇函数,也不是偶函数;【解析】(1)函数定义域为R,关于原点对称,∵f(-x)=|sin(-x)|=sinx=f(x) 函数y=|sin|是偶函数;(2)函数定义域为R,关于原点对称,f(-x)=1-cos(-2x)=1-cos2x,=f(x)函数y=1-cos2是偶函数;(3)函数定义域...
不是偶函数。1/sinx是奇函数,奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)等于,-f(x),那么函数f(x)就叫做奇函数。偶函数判定:如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足f(x)等于f(-x)如y等于x*x。
解:A.f(x)=sin|x| f(-x)=sin|-x|=sin|x| 所以A是偶函数 B.f(x)=(sinx)^2 f(-x)=(sin(-x))^2=(sinx)^2 偶函数 C.y=sinx 奇函数 D.非奇非偶 选CCCCCCCCCCCCCCCCC
相关知识点: 代数 函数 奇函数、偶函数 奇函数的概念 偶函数的概念 函数奇偶性的性质与判断 奇偶性的图像判断 奇偶性的代数判断 奇偶性的应用 试题来源: 解析 【解析】答案解析解数的f(-2)=(-2)⋯in^2x_2=-x⋅(-sinx)^2=-xsin^2x=-f(x) ☆☆ ...
答案见解析解析判断函数的奇偶性,一般用定义当fx=f(x)时,函数为偶函数。当f(x)=—f()时,函数为奇函数(1)y=sin3x f(x)=Sh_lx ff(-x)=sin3⋅(-x)=-sin3x=-f(x) y=S_1h3 x为奇函数(2)y=|sinx| f(x)=k_1hx ,f(x)=|sin(-x)|=|-sinx| =[-11.1sinx]=|sinx|=f(x...
的奇函数D.周期为2π的偶函数 试题答案 在线课程 函数f(x)=sin x 2 的周期是:4π;因为f(-x)=sin(- x 2 )=-sin x 2 =f(x),所以函数是奇函数, 故选A. 练习册系列答案 绩优课堂单元达标创新测试卷系列答案 名校秘题冲刺卷系列答案 神龙牛皮卷期末100分闯关系列答案 ...
【解答】解:(1)对于函数y=f(x)=1-sinx,由于它的定义域为R,关于原点对称,f(-x)=1+sinx,故f(-x)≠f(x),且 f(-x)≠-f(x),故f(x)既不是奇函数也不是偶函数.(2)对于函数y=g(x)=-3sinx,由于它的定义域为R,关于原点对称,g(-x)=-3sin(-x )=3sinx=-g(x),即g(-x)=-g(x),故f...
奇函数:f(-x)=-f(x)偶函数:f(-x)=f(x)这里还有隐含条件,是对定义域内的自变量来说的.当自变量取任意值时,有f(-x)=-f(x)成立,则可以说该函数是奇函数;有f(-x)=f(x)成立,则可以说该函数是偶函数.对于f(x)=sinx来说是奇函数.但y=f(x+1)只能说是一个复合函数.自变量是x而不是...