前端压缩,是指在不改变原网络结构的压缩技术,主要包括知识蒸馏、轻量级网络(紧凑的模型结构设计)以及滤波器(filter)层面的剪枝(结构化剪枝)等; 后端压缩,是指包括低秩近似、未加限制的剪枝(非结构化剪枝/稀疏)、参数量化以及二值网络等,目标在于尽可能减少模型大小,会对原始网络结构造成极大程度的改造。 总结:前端压...
结构化剪枝剪掉基于特定规则的连接或分层结构,同时保留整体网络结构。非结构化剪枝针对单个参数,会导致不规则的稀疏结构。最近的研究工作致力于将 LLM 与剪枝技术相结合,旨在解决与 LLM 相关的大规模和计算成本。 知识蒸馏 知识蒸馏(KD)是一种实用的机器学习技术,旨在提高模型性能和泛化能力。该技术将知识从被称为教师...
细粒度剪枝(fine-grained),向量剪枝(vector-level),核剪枝(kernel-level)方法在参数量与模型性能之间取得了一定的平衡,但是网络的拓扑结构本身发生了变化,需要专门的算法设计来支持这种稀疏的运算,被称之为非结构化剪枝。 而滤波器剪枝(Filter-level)只改变了网络中的滤波器组和特征通道数目,所获得的模型不需要专门的...
一、剪枝技术剪枝是模型压缩的一种常用方法,其核心思想是在保留模型性能的前提下,去除一些不必要的参数或连接,从而达到减小模型大小和降低计算复杂度的目的。在LLM中,剪枝可以通过删除一些权重参数或者神经元来降低模型复杂度。具体来说,剪枝算法会根据某个特定准则(如梯度、权重幅度等)来识别并删除对模型性能影响较小...
1 剪枝 剪枝是一项古老的技术,从上个世纪传承至今,在学术界和工业界相关的研究工作都是很活跃的。剪枝根据不同的粒度有很多种,小到一个卷积连接,大到一个网络层。 下面是Google关于剪枝的一个典型研究。 有三AI知识星球-网络结构1000变 To prune, or not to prune ...
轻量化网络是指在保持模型精度的基础上,进一步减少模型参数量和复杂度的一种技术。它既包括了对网络结构的探索,又有知识蒸馏、模型剪枝、模型量化等模型压缩技术的运用,是目前工业界和学术界的一个研究重点。在5月份,智东西公开课AI技术教研组聚焦于轻量化网络设计与优化的研究与应用,全新策划推出「轻量化网络...
模型压缩综述:剪枝、量化、知识蒸馏 查看原文 Convolutional Neural Network Architecture Alexnet - ImageNet Classification withDeepConvolutionalNeuralNetworks(2012) VGG - VeryDeep...ConvolutionalNetworks(2016) References [1] ImageNet Classification withDeepConvolutionalNeural...
学习这门课程是通往深度学习专家之路的重要一步。它不仅解释了模型优化在学术研究和工业实践中的重要性,而且深入剖析了模型压缩与优化技术,包括紧凑模型设计、模型剪枝、模型量化、知识蒸馏等,这些都是模型能够在各类嵌入式平台高效运行的关键。当前,深度学习框架如Tensorflow、TensorRT等都提供了强大的模型...
如下图 1 所示,本文提出的分类法为理解 LLM 的模型压缩方法提供了一个完整的结构化框架。这一探索包括对已有成熟技术的透彻剖析,包括但不限于剪枝、知识蒸馏、量化和低秩因子分解。此外,本文揭示了当前的挑战,并展望了这一发展领域未来潜在的研究轨迹。
如下图 1 所示,本文提出的分类法为理解 LLM 的模型压缩方法提供了一个完整的结构化框架。这一探索包括对已有成熟技术的透彻剖析,包括但不限于剪枝、知识蒸馏、量化和低秩因子分解。此外,本文揭示了当前的挑战,并展望了这一发展领域未来潜在的研究轨迹。