虽然会出现一些固有的精度损失,但精巧的量化技术可以在精度下降最小的情况下实现实质性模型压缩。 量化可以分为三种主要方法:量化感知训练(QAT)、量化感知微调(QAF)以及训练后量化(PTQ)。这些方法的主要区别在于何时应用量化来压缩模型。QAT 在模型的训练过程中采用量化,QAF 在预训练模型的微调阶段应用量化,PTQ 在模型...
前端压缩,是指在不改变原网络结构的压缩技术,主要包括知识蒸馏、轻量级网络(紧凑的模型结构设计)以及滤波器(filter)层面的剪枝(结构化剪枝)等; 后端压缩,是指包括低秩近似、未加限制的剪枝(非结构化剪枝/稀疏)、参数量化以及二值网络等,目标在于尽可能减少模型大小,会对原始网络结构造成极大程度的改造。 总结:前端压...
细粒度剪枝(fine-grained),向量剪枝(vector-level),核剪枝(kernel-level)方法在参数量与模型性能之间取得了一定的平衡,但是网络的拓扑结构本身发生了变化,需要专门的算法设计来支持这种稀疏的运算,被称之为非结构化剪枝。 而滤波器剪枝(Filter-level)只改变了网络中的滤波器组和特征通道数目,所获得的模型不需要专门的...
蒸馏的全称为知识蒸馏(Knowledge Distillation,KD),是2015 年由深度学习开山鼻祖Hinton 提出的一种模型压缩方法,是一种基于教师-学生网络思想的训练方法。 蒸馏已经成为压缩模型的主流方法之一,可以与量化和剪枝叠加使用,达到可观的压缩比。 原理 知识蒸馏的方法,一般是先训练一个性能较好的教师模型(大模型),然后使用这...
例如,可以使用剪枝技术减小模型大小和计算复杂度,然后通过知识蒸馏将教师模型的丰富知识迁移到学生模型上,最后采用量化技术进一步压缩模型大小和提高推理速度。通过综合运用这些技术,可以在保证模型性能的同时实现高效的LLM模型压缩。总结:随着深度学习和自然语言处理领域的快速发展,LLM模型压缩技术变得越来越重要。本文详细探讨...
1 剪枝 剪枝是一项古老的技术,从上个世纪传承至今,在学术界和工业界相关的研究工作都是很活跃的。剪枝根据不同的粒度有很多种,小到一个卷积连接,大到一个网络层。 下面是Google关于剪枝的一个典型研究。 有三AI知识星球-网络结构1000变 To prune, or not to prune ...
轻量化网络是指在保持模型精度的基础上,进一步减少模型参数量和复杂度的一种技术。它既包括了对网络结构的探索,又有知识蒸馏、模型剪枝、模型量化等模型压缩技术的运用,是目前工业界和学术界的一个研究重点。在5月份,智东西公开课AI技术教研组聚焦于轻量化网络设计与优化的研究与应用,全新策划推出「轻量化网络...
模型压缩综述:剪枝、量化、知识蒸馏 查看原文 Convolutional Neural Network Architecture Alexnet - ImageNet Classification withDeepConvolutionalNeuralNetworks(2012) VGG - VeryDeep...ConvolutionalNetworks(2016) References [1] ImageNet Classification withDeepConvolutionalNeural...
学习这门课程是通往深度学习专家之路的重要一步。它不仅解释了模型优化在学术研究和工业实践中的重要性,而且深入剖析了模型压缩与优化技术,包括紧凑模型设计、模型剪枝、模型量化、知识蒸馏等,这些都是模型能够在各类嵌入式平台高效运行的关键。当前,深度学习框架如Tensorflow、TensorRT等都提供了强大的模型...
如下图 1 所示,本文提出的分类法为理解 LLM 的模型压缩方法提供了一个完整的结构化框架。这一探索包括对已有成熟技术的透彻剖析,包括但不限于剪枝、知识蒸馏、量化和低秩因子分解。此外,本文揭示了当前的挑战,并展望了这一发展领域未来潜在的研究轨迹。