细粒度剪枝(fine-grained),向量剪枝(vector-level),核剪枝(kernel-level)方法在参数量与模型性能之间取得了一定的平衡,但是网络的拓扑结构本身发生了变化,需要专门的算法设计来支持这种稀疏的运算,被称之为非结构化剪枝。 而滤波器剪枝(Filter-level)只改变了网络中的滤波器组和特征通道数目,所获得的模型不需要专门的...
结构化剪枝剪掉基于特定规则的连接或分层结构,同时保留整体网络结构。非结构化剪枝针对单个参数,会导致不规则的稀疏结构。最近的研究工作致力于将 LLM 与剪枝技术相结合,旨在解决与 LLM 相关的大规模和计算成本。 知识蒸馏 知识蒸馏(KD)是一种实用的机器学习技术,旨在提高模型性能和泛化能力。该技术将知识从被称为教师...
前端压缩,是指在不改变原网络结构的压缩技术,主要包括知识蒸馏、轻量级网络(紧凑的模型结构设计)以及滤波器(filter)层面的剪枝(结构化剪枝)等; 后端压缩,是指包括低秩近似、未加限制的剪枝(非结构化剪枝/稀疏)、参数量化以及二值网络等,目标在于尽可能减少模型大小,会对原始网络结构造成极大程度的改造。 总结:前端压...
结构化剪枝剪掉基于特定规则的连接或分层结构,同时保留整体网络结构。非结构化剪枝针对单个参数,会导致不规则的稀疏结构。最近的研究工作致力于将 LLM 与剪枝技术相结合,旨在解决与 LLM 相关的大规模和计算成本。 知识蒸馏 知识蒸馏(KD)是一种实用的机器学习技术,旨在提高模型性能和泛化能力。该技术将知识从被称为教师...
如下图 1 所示,本文提出的分类法为理解 LLM 的模型压缩方法提供了一个完整的结构化框架。这一探索包括对已有成熟技术的透彻剖析,包括但不限于剪枝、知识蒸馏、量化和低秩因子分解。此外,本文揭示了当前的挑战,并展望了这一发展领域未来潜在的研究轨迹。
在 LLM 的模型压缩领域,研究者经常将多种技术与低秩分解相结合,包括剪枝、量化等,例如 LoRAPrune 和 ZeroQuantFP,在保持性能的同时实现更有效的压缩。随着该领域研究的继续,在应用低秩分解来压缩 LLM 方面可能会有进一步发展,但仍然需要进行探索和实验,以充分利用 LLM 的潜力。度量和基准***度量LLM 的推理效率可以...
【人工智能】模型压缩四大方法概述 | 量化、剪枝、蒸馏和二值化 | 模型瘦身 | 降低精度 | 速度提升 | 知识蒸馏 | 温度参数 | XNOR | 优缺点为什么叫QQ 立即播放 打开App,流畅又高清100+个相关视频 更多 1996 0 07:24 App 自研“A股温度”量化指标,提示系统性风险 1346 1 06:22 App 情绪周期量化工具 ...
例如,可以使用剪枝技术减小模型大小和计算复杂度,然后通过知识蒸馏将教师模型的丰富知识迁移到学生模型上,最后采用量化技术进一步压缩模型大小和提高推理速度。通过综合运用这些技术,可以在保证模型性能的同时实现高效的LLM模型压缩。总结:随着深度学习和自然语言处理领域的快速发展,LLM模型压缩技术变得越来越重要。本文详细探讨...
本文将重点介绍模型压缩的三大主流技术:剪枝、量化和知识蒸馏。 一、剪枝技术 剪枝技术是一种通过去除神经网络中不重要的参数(如权重或神经元)来减少模型复杂性的方法。其目标是在尽量保持模型性能的同时,显著减少模型的计算量和存储需求。 1. 剪枝的分类 剪枝技术可以根据剪枝的粒度和方式进行分类。按粒度划分,剪枝...
内容提示: 中文图书分类号:TP391 密密 级:公开 UDC :004 学学 校 代 码:10005 硕士专业学位论文 PROFESSIONAL MASTER DISSERTATION 论论 文 题 目: 基于剪枝- 量化- 知识蒸馏结合的模型压缩算法的研究与应用 论论 文 作 者: 刘佳阳 专业类别/ 领域: 计算机技术 指指 导 教 师: 包振山 : 论文提交日期: ...