* f[]:活动的结束时间(非降序排列) * a[]:0或者1,为0表示活动不被安排,1表示活动被安排 * k:活动个数*/voidgreedy(ints[],intf[],inta[],intk) {inti;intj =0;for(i=0;i<k;i++) { a[i]=0;//初始所有活动都未被安排} a[0] =1; printf("第1个活动被安排\n");intcount =1;for(...
3.编译源码 $ gcc -o test test.c -std=c89 4.运行及其结果
做法: 贪心策略,将每个区间的右端点从小到大排序,依次从每个区间的右端点向左端点做统计,统计当前共有多少点,如果数量不够,从右端向左端扫描画点,目的是使该点尽可能被后边的区间运用。 例题:https://loj.ac/problem/10001 AC代码: #include<bits/stdc++.h>usingnamespacestd;structnode{ints,e,t; };bool...
cout<<"请输入各活动开始时间:"; for(inti=1;i<=n;i++) { cin>>s[i]; } cout<<"请输入各活动结束时间:"; for(inti=1;i<=n;i++) { cin>>f[i]; } boolA[100]; GreedySelector(n,s,f,A); cout<<endl<<"最优活动安排方案为:"<<endl; ...
百度试题 结果1 题目以下哪种算法常用于解决活动安排问题? A. 贪心算法 B. 动态规划 C. 回溯法 D. 分支限界法 相关知识点: 试题来源: 解析 A 答案:A 解析:活动安排问题通常使用贪心算法求解。
使用贪心算法求解活动安排问题时,贪心选择策略是( )A.每一步优先选择结束时间最早的活动进行安排B.每一步优先选择结束时间最晚的活动进行安排C.每一步优先选择开始时间最早
活动安排问题是用贪心算法有效求解的一个很好例子。活动安排问题要求安排一系列争用某一公共资源的活动。用贪心算法可提供一个简单、漂亮的方法,使尽可能多的活动能兼容的使用公共资源。 设有n个活动的集合{0,1,2,…,n-1},其中每个活动都要求使用同一资源,如会场等,而在同一时间内只有一个活动能使用这一资源。
用贪心算法求解活动安排问题的策略是( )。A.最早开始时间B.最早结束时间C.活动用时时间最短D.活动用时时间最长
百度试题 结果1 题目( )能够使用贪心算法求解。 A. 活动安排问题 B. 最优装载问题 C. 单源最短路径问题 D. 最小生成树问题 E. 0-1背包问题 F. 部分背包问题 相关知识点: 试题来源: 解析 ABCDF
百度试题 结果1 题目下列问题中不能够使用贪心算法求解的是 A. 单源最短路问题 B. 硬币找零问题 C. 最小生成树问题 D. 活动安排问题 相关知识点: 试题来源: 解析 B