对视觉语言模型进行预训练的方法很多。主要技巧是统一图像和文本表征以将其输入给文本解码器用于文本生成。最常见且表现最好的模型通常由图像编码器、用于对齐图像和文本表征的嵌入投影子模型 (通常是一个稠密神经网络) 以及文本解码器按序堆叠而成。至于训练部分,不同的模型采用的方法也各不相同。例如,LLaVA 由 CL...
自2021 年以来,我们看到大家对结合视觉和语言模态的模型 (也称为联合视觉语言模型) 的兴趣越来越浓,一个例子就是 OpenAI 的 CLIP。联合视觉语言模型在非常具有挑战性的任务中表现出了让人眼前一亮的能力,诸如图像标题生成、文本引导图像生成、文本引导图像操作以及视觉问答等。这个领域在不断发展,其零样本泛化能力也...
视觉语言模型是可以同时从图像和文本中学习的多模态模型,其属于生成模型,输入为图像和文本,输出为文本。大视觉语言模型具有良好的零样本能力,泛化能力良好,并且可以处理包括文档、网页等在内的多种类型的图像。其拥有广泛的应用,包括基于图像的聊天、根据指令的图像识别、视觉问答、文档理解、图像描述等。一些视觉语言模型...
视觉语言模型是可以同时从图像和文本中学习的多模态模型,其属于生成模型,输入为图像和文本,输出为文本。大视觉语言模型具有良好的零样本能力,泛化能力良好,并且可以处理包括文档、网页等在内的多种类型的图像。其拥有广泛的应用,包括基于图像的聊天、根据指令的图像识别、视觉问答、文档理解、图像描述等。一些视觉语言模型...
视觉语言模型(Visual Language Model,VLM)是一种结合了图像和自然语言处理的技术。它的主要目的是理解和解释图像与文本之间的关联,并根据图像生成准确、生动的自然语言描述。这种模型通过分析图像内容和上下文来生成相关的文字描述,为计算机赋予了更接近人类的视觉理解能力。
1、什么是视觉语言模型? 视觉语言模型被广泛定义为可以从图像和文本中学习的多模态模型。它们是一种生成式模型,可以接受图像和文本输入并生成文本输出。 大型视觉语言模型具有良好的零样本能力,具有良好的泛化能力,并且可以处理多种类型的图像,包括文档、网页等。用例包括谈论图像、通过指令进行图像识别、视觉问答、文档理...
视觉语言模型:架构以及当前流行的模型 目前VLM 主流模型架构有CLIP、Flamingo和VisualBert等,他们所使用的学习技术有: 对比学习 对比学习是一种通过了解数据点之间的差异来学习数据点的技术。该方法计算数据实例之间的相似度得分,旨在最大限度地减少对比损失。它在半监督学习中最有用,在半监督学习中,只有少数标记样本引...
PrefixLM:通过将图像视作语言模型的前缀来联合学习图像和文本嵌入 基于交叉注意力的多模态融合:将视觉信息融合到具有交叉注意力机制的语言模型的各层中 MLM / ITM:使用掩码语言建模 (Masked-Language Modeling,MLM) 和图像文本匹配 (Image-Text Matching,ITM) 目标将图像的各部分与文本对齐 ...
对此,ByteDance Research 基于开源的多模态语言视觉大模型 OpenFlamingo 开发了开源、易用的 RoboFlamingo 机器人操作模型,只用单机就可以训练。使用简单、少量的微调就可以把 VLM 变成 Robotics VLM,从而适用于语言交互的机器人操作任务。OpenFlamingo 在机器人操作数据集 CALVIN 上进行了验证,实验结果表明,Robo...
大语言模型(LLMs)最近大受欢迎,人们开始尝试将其扩展到视觉领域。从可以引导我们穿越陌生环境的视觉助手,到仅使用高级文本描述就能生成图像的生成模型,视觉语言模型(VLM)的应用将极大地影响我们与技术的关系。然而,要提高这些模型的可靠性,还需要应对许多挑战。语言是离散的,而视觉是在一个维度更高的空间中发展的,其...