设fx在〔0,1〕上连续,在(0,1)内可导,且f(1)=0,求证:存在a属于(0,1),fa的导数=-fa/a 答案 作辅助函数g(x)=xf(x),则g'(x)=f(x)+xf'(x),g(0)=g(1)=0,根据罗尔定理,存在a属于(0,1)使得g'(a)=f(a)+af'(a)=0,即f'(a)=-f(a)/a.相关...
设f(x)在(0,1)连续,在(0,1)内可导,证明:存在x属于(0,1),使得f(x)+fx的导数=e的负x次方 (1)设在[0,1]连续,在(0,1)内可导,
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)
证明:令g(x)=x^2,G(x)=g(x)*f(x)。因为f(x)在[0,1]上连续在(0,1)内可导,且g(x)在[0,1]上连续在(0,1)内可导,那么G(x)=g(x)*f(x)在[0,1]上连续在(0,1)内可导。且G(x)'=(g(x)*f(x))'=(x^2*f(x))'=x^2f'(x)+2xf(x)而G(0)=g(0)*f(0)=0...
构造函数F(x)=(1-x) * ∫0到x f(t)dt,则F(x)在0,1上连续,在0,1内可导,F(0)=F(1)=0,由罗尔中值定理,在0,1内至少存在一点ξ,使得F'ξ=0。F'(x)=- ∫0到x f(t)dt+(1-x) * f(x)所以F'ξ=- ∫0到ξ f(t)dt+(1-ξ) * fξ=0,即∫0到ξf(x)dx=(1...
积分中值定理 :3 ∫ fx dx=3*1/3*f(a)=f(0)Rolle 定理 存在 c ,f‘(c)=0你自己写的详细点吧结果一 题目 高数一道证明题 设函数fx在0,1上连续,在0,1内可导,且3乘上积分号2/3到1 fxdx高数一道证明题 设函数fx在0,1上连续,在0,1内可导,且3乘上积分号2/3到1 fxdx=f0 证明在0,1内...
存在η∈(0,1/2)使得 f(1) = 2∫xf(x)dx = 2 · 1/2 ·ηf(η) = ηf(η) 构造函数 g(x) = xf(x), 则g(x)在[0,1]上连续可导, 由g(η) = g(1)可知存在ξ∈(η,1),使得g'(ξ) = 0 即f(ξ) + ξf'(ξ) = 0结果...
设fx在[0,1]上连续在(0,1)内可导且f(1)=0证明存在一点ξ属于(0,1)使2f(ξ)+ξf\"(ξ)=0 证明:令g(x)=x^2,G(x)=g(x)*f(x)。因为f(x)在[0,1]上连续在(0,1)内可导,且g(x)在[0,1]上连续在(0,1)内可导,那么G(x)=g(x)*f(x)在[0,1]上连续在(0,1)内可导。且G(x)'...
令g(x)=f(x)e^x,则g(x) 在[0,1]连续,在(0,1)内可导,且 g'(x)=f'(x)e^x+f(x)e^x=e^x(f(x)+f'(x))...(1)所以存在x使得g'(x)=(g(1)-g(0))/(1-0)=f(1)e-f(0)...(2)由(1)(2)得f(x)+f'(x)=e^-x(f(1)e-f(0))...
【答案】:设F(x)=[f(x)+f'(x)]e-x,由题设可知F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1),由罗尔定理可知至少存在一点ξ∈(0,1),使F'(ξ)=0,又F'(ξ)=[f'(x)+f"(x)]e-x-[f(x)+f'(x)]e-x=[f"(x)-f(x)]e-x由于e-ξ≠0,可知有f"...