强化学习,除了可以用于单个强化学习智能体和环境的相互作用,也可以用于两个或者多个智能体在某个强化学习环境下的博弈。 关于这种类型的算法,最有名的应该是蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)。 随着AlphaGo和AlphaZero算法在围棋、国际象棋和将棋等棋类领域的广泛应用,并且在这些领域内均取得了相比传统的Alp...
def is_terminal(self, node): return self.tree.level(node.identifier) == self.max_depth def back_propagate(self, node, score): while True: node.data.best_score = max(node.data.best_score, score) node.data.visits += 1 if node.is_root(): break node = self.tree.parent(node.identifie...
蒙特卡洛树搜索(MonteCarlo Tree Search)MCTS AlphaGo, AlphaZero 的成功,让原本小众的MCTS火了一把。 MCTS算法的产生是以决策论、博弈论、蒙特卡洛方法以及老.虎.机算法为基础的。 在决策论中,主要涉及马尔可夫决策过程Markov Decision Processes (MDPs): MDPs是对智能体(agent)在环境(environment)中连续决策进行建模...
def is_root(self):returnself._parentisNoneclassMCTS(object):"""A simple implementation of Monte Carlo Tree Search."""def __init__(self, policy_value_fn, c_puct=5, n_playout=10000):"""Arguments:policy_value_fn -- a function that takesina board state and outputs a list of (action,...
全称Monte Carlo Tree Search,是一种人工智能问题中做出最优决策的方法,一般是在组合博弈中的行动(move)规划形式。它结合了随机模拟的一般性和树搜索的准确性。 MCTS 受到快速关注主要是由计算机围棋程序的成功以及其潜在的在众多难题上的应用所致。超越博弈游戏本身,MCTS 理论上可以被用在以 {状态 state,行动 action...
全称Monte Carlo Tree Search,是一种人工智能问题中做出最优决策的方法,一般是在组合博弈中的行动(move)规划形式。它结合了随机模拟的一般性和树搜索的准确性。 MCTS受到快速关注主要是由计算机围棋程序的成功以及其潜在的在众多难题上的应用所致。超越博弈游戏本身,MCTS 理论上可以被用在以 ...
蒙特卡洛树搜索(Monte Carlo Tree Search,简称MCTS)是一种通过随机模拟来寻找最优决策的算法,广泛应用...
Monte Carlo Tree Search, 是一类树搜索算法的统称。蒙特卡洛树搜索是一种基于树数据结构、能在搜索空间巨大仍然比较有效的启发式搜索算法 MCTS是一种逼近纳什均衡的搜索策略。应用场景 搜索空间巨大 zero-sum、fully information、determinism、sequential、discrete 第二点即:场景能分出输赢、游戏信息完全公开、每一个...
全称 Monte Carlo Tree Search,是一种人工智能问题中做出最优决策的方法,一般是在组合博弈中的行动(move)规划形式。它结合了随机模拟的一般性和树搜索的准确性。 MCTS 受到快速关注主要是由计算机围棋程序的成功以及其潜在的在众多难题上的应用所致。超越博弈游戏本身,MCTS 理论上可以被用在以 {状态 state,行动 ...
来自 Surfer Zen的文章讲述了蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)这一经典机器学习算法的基本原理和Python实现。MCTS广泛应用于解决黑盒问题的最优解搜索,包括大规模优化和强化学习领域,如AlphaGo的围棋策略。本文将通过通俗讲解,引导读者理解基础MCTS版本,以便自行扩展适应需求。Python实现中,...