通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。扩展资料:等差数列的公式:公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);项数=(末项-首项来)÷公差+1;末项=首项+(项数-1)×公差;...
一、 等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列的通项公式为:an=a1n+(n-1)d (1) 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2) 以上n均属于正整数。 从(1)式可以看出...
等差数列的前n项和:Sn=[n(A1+An)]/2 Sn=nA1+[n(n-1)d]/2 等差数列求和公式:等差数列的和=(首数+尾数)*项数/2; 项数的公式:等差数列的项数=[(尾数-首数)/公差]+1. 解析看不懂?免费查看同类题视频解析查看解答 更多答案(2) 相似问题 等差数列通项公式 等差数列首项一定满足通项公式吗? 等差...
等差数列通项公式 等差数列是指数列中的每个数字与它的前一个数字之差都相等的数列。 通项公式是指等差数列中第n项的公式。设等差数列的首项为a1,公差为d,则等差数列的通项公式为: an = a1 + (n - 1)d 其中,an表示等差数列的第n项,n表示项数。
等差数列公式为:Sn=a1*n+[n*(n-1)*d]/2。等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9…2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。名称-|...
等差数列通项公式是an=a1+(n-1)d。 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。 通项公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)d→an=a1+(n-...
等差数列通项公式总结 an=a1+(n-1)d n=1时a1=S1 n≥2时an=Sn-Sn-1 an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b 高考数学应试技巧 1、拓实基础,强化通性通法 高考对基础知识的考查既全面又突出重点。抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理...
1、等差数列基本公式: 末项=首项+(项数-1)*公差 项数=(末项-首项)÷公差+1 首项=末项-(项数-1)*公差 和=(首项+末项)*项数÷2 末项:最后一位数 首项:第一位数 项数:一共有几位数 和:求一共数的总和。2、Sn=na(n+1)/2 n为奇数 sn=n/2(A n/2+A n/2 +1) n...
等差数列通项公式an=a1+(n-1)d,首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析...