y)dxdy,当f(y,x)=f(x,y)=0,当f(y,x)=-f(x,y)其中D1={(x,y)|(x,y)∈D,y≥x)也可换为D2={(x,y)|(x,y)∈D,y≤x};2、{D区域}∫∫f(x,y)dσ={D区域}∫∫f(y,x)dσ这是二重积分的特殊性质,非常有用。
如果二重积分中被积函数是关于y是奇函数,且积分区域是关于x轴对称的,那么它的积分是0.不理解啊……什么是关于y是奇函数……好乱有没有图像上的解释? 相关知识点: 代数 函数 函数奇偶性的性质与判断 奇偶性的图像判断 试题来源: 解析 关于x是奇函数,就是把y看成常数,实在理解不了,就把y看成是1,如z=...
1、如果积分区域关于x轴对称 被积函数是关于y的奇函数 ,等于0;被积函数关于y的偶函数,等于2倍。2、如果积分区域关于y轴对称 被积函数是关于x的奇函数 ,等于0;被积函数关于x的偶函数,等于2倍。3、如果积分区域关于x,y轴对称 被积函数是关于想x,y的奇函数 ,等于0; 被积函数关于x,y...
声明: 本网站大部分资源来源于用户创建编辑,上传,机构合作,自有兼职答题团队,如有侵犯了你的权益,请发送邮箱到feedback@deepthink.net.cn 本网站将在三个工作日内移除相关内容,刷刷题对内容所造成的任何后果不承担法律上的任何义务或责任
1、如果积分区域关于x轴对称 被积函数是关于y的奇函数 ,等于0;被积函数关于y的偶函数,等于2倍。2、如果积分区域关于y轴对称 被积函数是关于x的奇函数 ,等于0;被积函数关于x的偶函数,等于2倍。3、如果积分区域关于x,y轴对称 被积函数是关于想x,y的奇函数 ,等于0; 被积函数关于x,y...
二重积分主要是看积分函数的奇偶性,如果积分区域关于X轴对称考察被积分函数Y的奇偶,如果为奇函数,这为0,偶函数这是其积分限一半的2倍。如果积分区域关于y 轴对称考察被积分函数x的奇偶.三重积分也有奇偶性,但是有差别,要看积分区域对平面的对称性,即 xoy xoz yoz 那么如果区域即关于x对称又关于y对称的时候该怎...
为什么积分区域关于直..为什么积分区域关于直线x=Π对称,区域内(x-Π)的二重积分=0呀,求助大佬解释一下,我想不出来
二重积分的对称性 二重积分的对称性主要是看被积函数与积分区域两个因素,若有对称性,则积分区域必定关于原点对称,二重积分也有奇偶性,但是有差别,要看积分区域对平面的对称性。1、对于Dxy是关于y轴对称的区域,满足∫∫f(x,y)dxdy=∫∫f(-x, y)dxdy。2、如果Dxy是关于y=x对称的区域,那么∫∫f(x,y)...
把被积函数和积分区域做平移之后关于y轴对称 新的被积函数是一个关于x的奇函数 哦了 ...
因此,二重积分可以分解为两部分,一部分只对左区域求积分,另一部分只对右区域求积分。两者相加,一...