矩阵A的所有的特征值为:λ1=0、λ2=3、λ3=-6。计算过程:|A-λE|=0,因为A={(1,2,1),(2,-5,2),(1,2,1)} |{(1-λ,2,1),(2,-5-λ,2),(1,2,1-λ)}| =|{(-λ,0,λ),(2,-5-λ,2),(1,2,1-λ)}| =|{(-λ,0,λ...
“矩阵A有n个线性无关的特征向量”不是就等于说“矩阵A有n个不同的特征值”。矩阵A有n个线性无关的特征向量时,不一定有n个不同的特征值。有n个复根λ1,λ2,…,λn,为A的n个特征根。当特征根λi(I=1,2,…,n)求出后,(λiE-A)X=θ是齐次方程,λi均会使|λiE-A|=0,(λiE-...
矩阵A的所有的特征值为:λ1=0、λ2=3、λ3=-6。计算过程:|A-λE|=0,因为A={(1,2,1),(2,-5,2),(1,2,1)} |{(1-λ,2,1),(2,-5-λ,2),(1,2,1-λ)}| =|{(-λ,0,λ),(2,-5-λ,2),(1,2,1-λ)}| =|{(-λ,0,λ...
设矩阵A为一个3阶矩阵,其特征值为5、7和8。要求矩阵I+A的特征值,其中I是单位矩阵。首先,单位矩阵I是一个对角线上元素全为1的矩阵,其余元素全为0。对于3阶矩阵,单位矩阵可以表示为:I = [1 0 0][0 1 0][0 0 1]然后,矩阵I+A可以表示为:I + A = [1+5 0 0 ][6 0 0 ]...
解析]设矩阵A的特征值为I,则A的特征值为I由a,b为四维非零的正交向量 ? bTa 0从而 A2 = (abT)(abT) = a (bTa)bT =02 2所以A的特征值I = 0 T A的特征值为所以4阶矩阵A的4个特征值均为0. 相关知识点: 试题来源: 解析 答案1 s 2 (s 2 + m2)解析] ...
设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
解:因为矩阵A的特征值为λ1=-1,λ2=1,λ3=2,那么|A|=λ1*λ2*λ3=-1*1*2=-2。又根据|A*| =|A|^(n-1),可求得 |A*|= |A|^2 = (-2)^2 = 4。同时根据矩阵特征值性质可求得A^2-2A+E的特征值为η1、η2、η3。则η1=(λ1)^2-2λ1+1=4,η1=(λ2)^2...
A*α=|A|A逆α Aα=λα A逆Aα=λA逆α α=λA逆α (|A|/λ)α=A*α 故A*的特征值为|A|/λ |A|=1*2*(-3)=-6 所以A*的特征值为-6/1,-6/2,-6/3,即-6,-3,2 A*—3A+2E的特征值为 -6-3+2=-7 -3-6+2=-7 2+9+2=13 所以|A*—3A+2E|=-7*-7*13...
特征方程的一般形式为:[|A - \lambda I| = 0]其中,(A)是n阶矩阵,(\lambda)是特征值,(I)...
且结果仍为对角阵。求特征向量,设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。