逆矩阵是指对于n阶方阵A,存在一个n阶方阵B,使得AB=BA=I(I是单位矩阵),则B是A的逆矩阵。 逆矩阵的深入解析 逆矩阵的基本定义 逆矩阵是线性代数中的一个核心概念,对于n阶方阵A,如果存在另一个n阶方阵B,使得AB=BA=I(其中I是单位矩阵),那么B就被称为A的逆矩阵。逆矩阵通常...
伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但可以用函数pinv(A)求其伪逆矩阵。基本语法为X=pinv(A),X=pinv(A,tol),其中tol为误差,pinv为pseudo-inverse的缩写:max(size(A))*norm(A)*eps。函数返回一个与A的转置矩阵A' 同型的矩阵X,并且满足:AXA=A,XAX=X.此时,称矩阵X...
矩阵求逆,即求矩阵的逆矩阵。矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则...
(2)逆矩阵的含义:一个n阶方阵A称为可逆的,或非奇异的,如果存在一个n阶方阵B,使得AB=BA=E,则称B是A的一个逆矩阵。A的逆矩阵记作A-1。2、两者的基本性质不同:(1)矩阵转置的基本性质:(A±B)T=AT±BT;(A×B)T= BT×AT;(AT)T=A;(KA)T=KA。(2)逆矩阵的基本性质:...
注意;只有方形矩阵才有矩阵的逆,而非方形的叫做“矩阵的伪逆”,此处只论方阵。其次只有当方阵的行列式不为0时,其逆矩阵才存在,故这里只讨论其行列式不为0的方阵(只要有任意一行或一列全文0的方阵,其行列式值为0,但不仅限于此).先算矩阵的逆的转置 算此矩阵的转置的逆 故证明成立。
矩阵的逆是指一个矩阵M乘以另一个矩阵N的结果等于单位矩阵的矩阵N的反矩阵。通俗地说,矩阵的逆可以看作是一种“倒数”的概念。在数学中,矩阵的逆是一个非常重要的概念,它可以帮助我们解决很多求解问题时的困难。矩阵的逆在实际应用中有着广泛的应用,尤其是在计算机图形学、控制理论等领域中。例如...
矩阵的-1次方是指该矩阵的逆矩阵,该矩阵成为可逆矩阵。矩阵与矩阵的-1次方的乘积为单位矩阵。设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
则秩等于n,所以矩阵的行列式不等于0,矩阵可逆。计算过程:n×n的实对称矩阵A如果满足对所有非零向量 ,对应的二次型 若 ,就称A为正定矩阵。若 则A是一个负定矩阵,若 ,则n阶矩阵(方正)的行向量或列向量线性无关,则秩等于n,所以矩阵的行列式不等于0,矩阵可逆。
逆矩阵等于自身的矩阵,即满足A²=E的矩阵,这样的矩阵称为对合矩阵。几个明显的性质有:1,(E+A)(E-A)=0成立的充要条件为A为对合矩阵。2,若A,B都为对合矩阵,则AB为对合矩阵的充要条件为AB=BA。3,对合矩阵的行列式为±1。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数...