矩阵的等价、相似、合同分别是什么?有什么包含关系吗? 答案 存在满秩矩阵PQ,使得:B=PAQ成立,则称矩阵A、B等价;存在可逆矩阵P,使得:B=P-1AP成立,则称矩阵A、B相似;存在可逆矩阵P,使得:B=P’AP成立,则称矩阵A、B合同.相关推荐 1矩阵的等价、相似、合同分别是什么?有什么包含关系吗?反馈 收藏 ...
✅1. 相似矩阵必定等价,合同矩阵也必定等价; ✅2. 在没有其他前提条件的情况下,相似和合同之间没有必然联系。可以找到相似但不合同的矩阵,也可以找到合同但不相似的矩阵; ✅3. 对于实对称矩阵,相似必定意味着合同; ✅4. 利用正负惯性指数来判断两个矩阵是否合同,这种方法仅适用于实对称矩阵; ✅5. 与...
矩阵的合同,等价与相似 矩阵的合同、等价和相似是三种不同的关系。 合同关系是指对于两个矩阵A和B,存在一个可逆矩阵P,使得PAP^{-1} = B。也就是说,两个矩阵可以通过一个可逆矩阵的相似变换,得到一个相同的矩阵。 等价关系是指对于两个矩阵A和B,存在两个可逆矩阵P和Q,使得PABQ = I,其中I为单位矩阵。
两个矩阵A和B如果满足存在一个可逆矩阵P,使得A=P^-1BP,则称A和B相似。相似矩阵具有以下性质:相似关系是等价关系。也就是说,如果A相似于B,那么B相似于A。如果A相似于B且B相似于C,那么A相似于C。相似矩阵有相同的秩。相似矩阵的特征多项式和特征值相同。矩阵的合同 两个矩阵A和B如果满足存在一个可逆矩...
1、等价,相似和合同三者都是等价关系。 2、矩阵相似或合同必等价,反之不一定成立。 3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。 4、矩阵相似,则存在可逆矩阵P使得,AP=PB。 5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。
(三)矩阵的相似 1、定义: n阶方阵A,B,若存在一个可逆矩阵P使得 成立,则称矩阵A,B相似,记为 。 2、性质: 性质3 (1)反身性 ; (2)对称性 由 即得 ; (3)传递性 和 即得 总之,合同是一种矩阵之间的等价关系,而且经过非退化的线性替换,新二次型的矩阵与原二次型矩阵是合同的. (4) (其中 是任意...
1.等价 符号= P、Q可逆 可以经过有限次初等变换得到r相等 2.相似 符号~^-1 P可逆 行列式、迹、特征值、特征向量、秩都相等 看重根:yE-A和重根个数是不是一样的 yE-A~yE-B且r(yE-A)~r(yE-B) 3.合同 符号≃ T C可逆合同的定义,存在可逆矩阵P,使B=P^TAP,则称A与B合同,记A≃B 合同对角化...
2.必能相似化,且存在正交矩阵 Q ,使 Q^{T}AQ=Q^{-1}AQ=\Lambda ; 非对称矩阵一定不能通过正交阵 Q 相似对角化。(正交变换) 3.不同特征值的特征向量必定正交( \alpha\beta^T=0 ) 可逆阵P是无关特征向量,正交阵Q是单位正交特征向量(" Q∈P ") 4.实对称矩阵A: ①k重特征值有k个线性无关的特...
(三)矩阵的相似 1、定义: n阶方阵A,B,若存在一个可逆矩阵P使得 成立,则称矩阵A,B相似,记为 。 2、性质: 性质3 (1)反身性 ; (2)对称性 由 即得 ; (3)传递性 和 即得 总之,合同是一种矩阵之间的等价关系,而且经过非退化的线性替换,新二次型的矩阵与原二次型矩阵是合同的. (4) (其中 是任意...
答案解析 查看更多优质解析 解答一 举报 存在满秩矩阵PQ,使得:B=PAQ成立,则称矩阵A、B等价;存在可逆矩阵P,使得:B=P-1AP成立,则称矩阵A、B相似;存在可逆矩阵P,使得:B=P’AP成立,则称矩阵A、B合同. 解析看不懂?免费查看同类题视频解析查看解答