线性代数:矩阵A的秩为n-1,证明伴随矩阵的秩为1.(要有过程) 答案 请看图片:\x0d例5设A是n阶方阵(1).证明A的转置伴随矩阵A的秩-|||-n,r(4)=n-|||-r(A)={1,r(A)=n-l-|||-0,r(4)n-1-|||-证明(1)当r(4)=n时,A可逆.由A4AE知|AHA-≠O,所以A可-|||-逆,所以r(A)=n.+-...
结果1 题目【题目】设方阵A的秩是n-1,则其伴随矩阵Ax的秩为 相关知识点: 试题来源: 解析 【解析】∵AA的伴随矩阵等于0,∴r(a)+r(a 伴随矩阵)≤n,而r(a)=n-1.r(a 1≠β√Θ)≤1至少存在一个n-1阶矩阵不为0,.∴r(a 伴随) ≥1所以等于1 ...
解析 D-|||-AA^*=|A|E=O -|||-⇒r_A+r_A≤n -|||-=n—-|||-而A必有某n—1阶子式-|||-不为0,故A必有某-|||-元不为0,则-|||-r_A0 -|||-故-|||-r_A=1 分析总结。 线性代数矩阵的秩设n阶方阵a的秩为n1则伴随阵a的秩...
若原矩阵的秩小于(n-1),其伴随的秩为o; 相关知识点: 试题来源: 解析 矩阵的等价只是他们的秩相等,即使等价的两个矩阵也不一定相等,因此更谈不上他们的伴随了相等矩阵的定义为,同阶矩阵,其中对应的元素都相等.这里矩阵的秩和他的伴随矩阵的秩之间是有关系的,关系如下:(假设n阶矩阵)......
矩阵A的秩为n-1,意味着A矩阵的行或列向量中,只有n-1个是线性无关的,其余的一个线性相关。由此可以得出AA*的结果为零矩阵O,即AA*=O。由此可知,伴随矩阵A*的秩r(A*)必须小于等于1。这是因为伴随矩阵A*中的每个元素都是A的余子式,而A的秩为n-1意味着A中存在一个非零的n-1阶子式,...
由r(A) < n, 有|A| = 0, 进而AA* = |A|·E = 0.由矩阵乘法可知, A*的列向量都是线性方程组AX = 0的解.而r(A) = n-1, 故AX = 0的基础解系恰有1个非零解,A*的各列都是该非零解的常数倍, 故r(A*) ≤ 1.又由r(A) = n-1, A有n-1阶非零子式, 故A* ≠ 0, r(A*...
由此,得出伴随矩阵A*的秩r(A*)的上限为1。因为若A的秩为n-1,意味着矩阵A中必然存在一个n-1阶非零子式,进而推断A*中必存在一个非零元素。深入剖析,当矩阵A的秩为n-1时,A*的秩不能超过1,这是因为A*的生成元数量受A本身秩的限制,即A*的秩r(A*)≤1。同时,结合矩阵A的秩为n-1...
设方阵A的秩是n-1,则其伴随矩阵A*的秩为 亲, 答案 1,因为AA的伴随矩阵等于0,所以r(a)+r(a伴随矩阵)小于等于n,而r(a)等于n-1,所以r(a伴随)小于等于1,又因为至少存在一个n-1阶矩阵不为0,所以r(a伴随)大于等于1,所以等于1 相关推荐 1 设方阵A的秩是n-1,则其伴随矩阵A*的秩为 亲, 反馈...
若A的秩为n-1,则|A|=0,于是AA*=|A|E=0,这说明A*的列都是Ax=0的解. 因为A的秩为n-1,所以Ax=0的基础解系只有一个解向量.所以A*的列向量都可由这一基础解系来线性表示,故A*的秩不超过1,但A*有非零元,所以A*的秩大于或等于1,所以A*的秩只能等于1. 分析总结。 所以a的列向量都可由这一...
解答一 举报 1,因为AA的伴随矩阵等于0,所以r(a)+r(a伴随矩阵)小于等于n,而r(a)等于n-1,所以r(a伴随)小于等于1,又因为至少存在一个n-1阶矩阵不为0,所以r(a伴随)大于等于1,所以等于1 解析看不懂?免费查看同类题视频解析查看解答 相似问题 设A为4阶方阵,A的秩为2,求A伴随矩阵A*的秩. A是n阶方...