return np.ravel(J) 反向传播BP 上面正向传播可以计算得到J(θ),使用梯度下降法还需要求它的梯度 BP反向传播的目的就是求代价函数的梯度 假设4层的神经网络, 记为-->l层第j个单元的误差 《===》 (向量化) 没有 ,因为对于输入没有误差 因为S型函数 的倒数为: , 所以...
https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py 神经网络model 先介绍个三层的神经网络,如下图所示 输入层(input layer)有三个units( 为补上的bias,通常设为1) 表示第j层的第i个激励,也称为为单元unit 为第j层到第j+1层映射的权重矩阵,就是每条边的权重 ...
https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py 神经网络model 先介绍个三层的神经网络,如下图所示 输入层(input layer)有三个units( 为补上的bias,通常设为1) 表示第j层的第i个激励,也称为为单元unit 为第j层到第j+1层映射的权重矩阵,就是每条边的权重 ...
https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py 神经网络model 先介绍个三层的神经网络,如下图所示 输入层(input layer)有三个units( 为补上的bias,通常设为1) 表示第j层的第i个激励,也称为为单元unit 为第j层到第j+1层映射的权重矩阵,就是每条边的权重 ...
用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络。 BP神经网络 全部代码 https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py 神经网络model 先介绍个三层的神经网络,如下图所示 输入层(input layer...
用Python实现BP神经网络(附代码)⽤Python实现BP神经⽹络(附代码)⽤Python实现出来的机器学习算法都是什么样⼦呢?前两期线性回归及逻辑回归项⽬已发布(见⽂末链接),今天来讲讲BP神经⽹络。BP神经⽹络 全部代码 神经⽹络model 先介绍个三层的神经⽹络,如下图所⽰ 输⼊层(input layer)...
BP神经网络 全部代码 https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py 神经网络model 先介绍个三层的神经网络,如下图所示 输入层(input layer)有三个units( 为补上的bias,通常设为1) 表示第j层的第i个激励,也称为为单元unit ...