立体几何 空间几何体 球的体积和表面积 球的体积 球的表面积 球内接多面体 试题来源: 解析 答案解析Bv_1≈πr_3^2⋅R/n=(πR^3)/n[1-((i-1)/n)^2] =(πR^2)/n[n-(k+2^2+⋯+(n-1)^2)/(n^2)解析∵1^2+2^2+⋯+n^2=1/6n(n+1)(2n+1) ∴V_4=(Fw^2)/nLn-1/(n...
1圆表面积推导d代表什么意思?推导圆球的体积和表面积计算公式的过程是这样的:假设圆球的半径和圆柱的底面半径相等,都为r,则圆柱的高是2r,或者是d,再用字母和符号表示出圆柱的体积和表面积计算公式,然后分别乘 ,就得出圆球的体积和表面积,最后进行整理.具体过程如下:V圆柱=πr2×2r =πr2×(r+r) =πr3...
解析 写成微积分的形式,然后用定积分在用公式可解。 以上就是球体的表面积和体积公式,关于它们的推导过程比较难,大部分同学可以只记最终的计算公式就好。学有余力的同学建议好好理解一下推导过程,这其中运用了一些数学思想,对解题思路有很好的参考作用。
V半径= ,所以,半径为R的球的体积为: V= 1..3.2球的体积和表面积(2) 球的表面积推导方法(设球的半径为R,利用球的体积公式推导类似方法) (1)分割。把球O的表面分成n个“小球面片”,设它们的表面积分别是S1,S2,…… Sn,那么球的表面积为:S=S1+S2+……+Sn 把球心O和每一个“小球面片”的顶点连接...
球的表面积=4πr^2, r为球半径 .V球=(4/3)πr^3, r为球半径 .球体积的推导方法是二重积分而表面积就是体积的导数
可求相应的球的体积公式是V=4/3πR^3 表面积:让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2.求球的表面积.以x为积分变量,积分限是[-R,R].在[-R,R]上任取一个子区间[x,x+△x],这一段圆弧绕x轴得到的球上部分的面积近似为2π×y×ds,ds是弧长.所以...
球的表面积计算公式:球的表面积=4πr^2(r为球半径),球的体积计算公式:V球=(4/3)πr^3(r为球半径)。 推导过程 球体表面积公式S(球面)=4πr^2运用第一数学归纳法:把一个半径为R的球的上半球横向切成n份,每份等高 并且把每份看成一个圆柱,其中半径等于其底面圆半径 则从下到上第k个圆柱的侧面积...
V=2/3πR^3 。因此一个整球的体积为4/3πR^3 球是圆旋转形成的。圆的面积是S=πR^2,则球是它的积分,可求相应的球的体积公式是V=4/3πR^3 2解:你可以学学爱迪生,将球挖个小眼,灌满水,然后将水倒进量杯就算出体积拉!!!祝你学习进步!!!诚答~~~...
即:整球的体积公式V=4/3πR^3。二,第二种从“上而下”过剩近似值逼近(比实际值大)准确值推导法:设球的半径为R,半球体高的平分数为n;r1,r2,r3---rn分别为各不同圆柱饼的半径,具体推算步骤如下:根据直角三角形定理,先求出每个圆柱饼的半径得:(一),(1)r1=根号R^2-(R-R/...
推导圆球的体积和表面积计算公式的过程是这样的 假设圆球的半径和圆柱的底面半径相等,都为r,则圆柱的高是2r,或者是d,再用字母和符号表示出圆柱的体积和表面积计算公式,然后分别乘 ,就得出圆球的体积和表面积,最后进行整理. V圆柱=π 2 T×2r =π 2 T×(r+r) =π×2 V球=π×2× = πr3 S圆柱...