根据卡方分布的定义,一个正态随机变量的平方服从卡方分布,且自由度为1。因此,n-1个独立正态随机变量的平方和服从自由度为n-1的卡方分布。 8. 综上所述,样本方差s^2服从自由度为n-1的卡方分布,即: \[ \frac{(n-1)s^2}{σ^2} \sim χ^2(n-1) \] 拓展知识: 在证明样本方差服从卡方分布的过程中...
样本方差不直接服从卡方分布,而是 (n-1) 倍的样本方差,即 (n-1)S2,服从自由度为 (n-1) 的卡方分布。 证明 为了证明这一点,需要以下结论: 结论1: 设n 个相互独立的标准正态随机变量经过正交变换后变为 ,则依然是相互独立的标准正态随机变量,且。 证明: · 第一部分: 证明 是相互独立的。 协方差 ,...
样本方差服从n-1的卡方分布,因为在样本方差计算中,涉及均值的减去,产生一个约束条件,导致n个观测值中的自由度减少一个,从而样本方差遵循自由度为n-1的卡方分布。 为什么样本方差服从n-1的卡方分布 在统计学中,理解样本方差与卡方分布之间的关系对于进行准确的统计推断至...
要证明样本方差服从n-1卡方分布,需要从以下几个步骤进行证明: 1.根据样本方差的定义,假设有一个样本容量为n的简单随机样本,样本方差的计算公式为: s^2 = Σ(Xi - X_mean)^2 / (n-1) 其中,Xi是第i个观测值,X_mean是样本均值。 2.接下来,我们可以证明样本方差的期望为总体方差的(n-1)/n倍。总体方...
由(2)式得: cov(Z_{i},Z_{j})=\sum_{k=1}^{n}{}a_{ik}a_{jk}=0。 所以Z_{1} ~ Z_{n} 独立。 p.s.事实上,两个正态分布不相关不能推出他们独立,但是这里情况不同。 由于Y_{1} ~ Y_{n} 是相互独立的,所以 (Y_{1},Y_{2},Y_{3},……,Y_{n}) 服从n维正态分布,然后记...
x_{k+1}-\bar{x}_k\sim N(0,\frac{k+1}{k}\sigma^2) 所以 \frac{(x_{k+1}-\bar{x}_k )^2}{\frac{k+1}{k}\sigma^2} =(\frac{x_{k+1}-\bar x_k}{\sqrt{\frac{k+1}{k}\sigma }} )^2\sim N(0,1)^2\sim \chi^2(1) 根据卡方分布性质 \frac{ks_{k+1}^2}...
即它们与样本均值的关联性限制了自由度。在正态分布假设下,为了确保样本方差作为总体方差无偏估计的准确性,统计学原理指出应将自由度减少一个单位。由此,样本方差的自由度定为n-1,遵循自由度为n-1的卡方分布。原因在于,卡方分布能够准确描述在自由度限制下,样本方差的统计特性。
其实在我认为,并非是样本方差服从n-1卡方分布,而是样本方差与总体方差之比服从n-1卡方分布,n为样本量 分析总结。 其实在我认为并非是样本方差服从n1卡方分布而是样本方差与总体方差之比服从n1卡方分布n为样本量结果一 题目 请问:样本方差为什么服从(n-1)卡方分布有大侠知道吗,哪里有证明啊 答案 其实在我认为,并非...
样本方差是总体方差的无偏估计。在统计学中,样本方差是总体方差的无偏估计,而总体方差的计算公式为n-1,因此样本方差服从n-1的卡方分布。
因为n项相加,其中有一项可以被其他的线性表出,所以自由度是n-1。不除以方差的话,没有什么现成的分布。 样本方差S^2中是X均值是已知的,假设样本容量为n,那么只需知道n-1个样本值即可,剩下的一个样本值由总体均值减去这n-1个样本值得到,故只需n-1个样本值,即服从n-1个自由度。 扩展资料 设A=(aij)是...