因此,方差公式在计算样本方差时除以n-1,是为了得到一个更准确、更可靠的总体方差的估计值。
在样本方差的计算中,除以n-1正是为了实现无偏估计。 如前所述,如果直接除以n来计算样本方差,那么得到的估计值会偏小。这是因为样本均值与总体均值之间存在一定的误差,这种误差在样本方差的计算中会被放大。而通过除以n-1,可以调整这种偏差,使得样本方差的期望等于总体方差...
样本方差计算公式除以n-1是因为:为了让方差的估计是无偏的。样本方差计算公式里分母为n-1的目的是为了让方差的估计是无偏的。1、如果只是要描述样本数据间的离散程度,则样本方差计算公式中的除数应为“n”。2、当n足够大的时候,不必太在意样本方差计算公式中除数的这两种不同的选择。3、在多数场合...
在统计学中,样本方差的计算公式为何要使用(n-1)而不是n?这背后隐藏着一个重要的数学原理。我们首先定义总体方差为σ²,均值为μ,样本均值为X。样本方差S的计算公式为:S=[(X1-X)^2+(X2-X)^2...+(Xn-X)^2]/(n-1)。为了更好地理解这个公式,我们先计算随机变量X1到Xn平方和...
样本方差公式中为什么要除以(n-1)而不是n呢?谁能讲讲其中的奥妙? 答案 总体方差为σ²,均值为μS=[(X1-X)^2+(X2-X)^2.+(Xn-X)^2]/(n-1) X表示样本均值=(X1+X2+...+Xn)/n设A=(X1-X)^2+(X2-X)^2.+(Xn-X)^2E(A)=E[(X1-X)^2+(X2-X)^2.+(Xn-X)^2]=E[(X1)^2...
而在实际问题中,我们采用的是抽样调查,不可能对整体作试验,因此我们考虑的方差是样本方差在求样本方差时,我们需要除以n-1,这叫做方差的点估计值,以使方差的数值更加具有参考价值因此,一般的问题我们处理的都是样本问题,所以我们求方差时都要除以n-1 解析看不懂?免费查看同类题视频解析查看解答...
当然,在n足够大的时候,样本方差这两种计算方法之间的差异可以忽略不计。最后,我将上述阐述归纳如下:1. 设若总体数据已知,则该总体的数字特征不存在推测的问题,只存在描述的问题,是故总体方差计算公式中的除数应为"N”。2. 以"n-1”为除数的样本方差计算公式是总体方差的无偏估计值计算式。
差别就在一个除以n,一个除以(n-1)样本方差之所以要除以(n-1)是因为这样的方差估计量才是关于总体方差的无偏估计量。在公式上来说就是样本方差的估计量的期望要等于总体方差。如下:E(S^2)=δ^2 没有修正的方差公式,它的期望是不等于总体方差的.也就是说,样本方差估计量如果是用没有修正的...
样本方差之所以要除以(n-1)是因为这样的方差估计量才是关于总体方差的无偏估计量。这个公式是通过修正下面的方差计算公式而来的:修正过程为:1、方差计算公式:2、 均值的均值、方差计算公式:对于没有修正的方差计算公式我们有:因为:所以有:在这里如果想修正的方差公式,让修正后的方差公式求出的...
是由估计量的无偏性决定的? 答案 E(S^2)=∑(Xi-X)/(N-1)=方差 是无偏估计而E(S^2)=∑(Xi-X)/N不等于方差 有偏差 所以除以N-1相关推荐 1样本方差公式中为什么要除以(n-1)呢,谁能讲讲其中的奥妙?是由估计量的无偏性决定的?反馈 收藏 ...