正确答案:设对记录R[1.n]进行快速排序,要求用非递归算法。利用一个包含有low和high两个整数成员的记录数组stack[]作为栈,low和high成员分别指示某个子文件的首、尾记录的下标号。算法如下: void quicksort(SeqList R,int n){//设待排序记录放在R[1.n]中,下标从1开始 int i,j,low,high,top=0: struct...
⑵ 在非递归实现快速排序时,可根据基准把待排序区间分割为两个区间。若下一趟先对较短的区间进行排序,试证明在这种情况下快速排序所需栈的深度为O(nlog2n)。 由快速排序的算法可知,所需递归工作栈的深度取决于所需划分的最大次数。如果在排序过程中每次划分都能把整个待排序序列根据基准对象划分为左、右两个子...
// 2. 挖坑法int PartSort2(int* a, int left, int right){//保存关键值int key = a[left];//设置坑int hole = left;//一次排序while (left < right){//右边找小while (left < right && a[right] > key){right--;}//找到了将其放入坑中,然后更新坑的位置a[hole] = a[right];hole = ...
voidQuickSort(int*array,int left,int right){assert(array);if(left>=right)//表示已经完成一个组{return;}int index=PartSort(array,left,right);//枢轴的位置QuickSort(array,left,index-1);QuickSort(array,index+1,right);} PartSort()函数是进行一次快排的算法。 对于快速排序的一次排序,有很多种算法...
快速排序的三个步骤: 1、分解:将数组A[l...r]划分成两个(可能空)子数组A[l...p-1]和A[p+1...r],使得A[l...p-1]中的每个元素都小于等于A(p),而且,小于等于A[p+1...r]中的元素。下标p也在这个划分过程中计算。 2、解决:通过递归调用快速排序,对数组A[l...p-1]和A[p+1...r]排序...
1. 前提 排序算法(七) —— 快速排序 排序算法杂谈(三) —— 归并排序的非递归实现 2. 快速排序与归并排序的递归 快速排序(Quick Sort)与归并排序(Merge Sort)虽然都采用了递归地思想,但是其递归地本质却有所不同。 快速排序,手动划分,自然有序。 归并排序,自然
1.非递归实现快速排序 快速排序的非递归实现主要依赖于栈(stack)来模拟递归过程中的函数调用栈。递归版本的快速排序通过递归调用自身来处理子数组,而非递归版本则通过手动管理一个栈来跟踪接下来需要排序的子数组的边界 那么怎样通过栈来实现排序的过程呢?
快速排序非递归算法 1. 创建一个栈,并将待排序数组的起始位置和结束位置作为初始元素入栈。 2. 进入循环,直到栈为空: - 弹出栈顶元素,得到当前待排序的起始位置和结束位置。 - 选择起始位置作为基准元素,将起始位置和结束位置分别保存为l和r。 - 当l < r时,执行以下操作: - 从右往左扫描数组,找到第一个...
排序算法是编程的基础。 常见的四种排序算法是:简单选择排序、冒泡排序、插入排序和快速排序。其中的快速排序的优势明显,一般使用递归方式实现,但遇到数据量大的情况则无法适用。实际工程中一般使用“非递归”方式实现。 快速排序(Quick Sort)算法(非递归方式) ...
为了解决这个问题,我们可以使用非递归的方式来实现快速排序。 非递归的快速排序算法可以使用栈来模拟递归的过程,具体步骤如下: 1.创建一个栈并将整个数组的起始索引和结束索引入栈。 2.当栈不为空时,重复以下步骤: -弹出栈顶索引对应的子数组。 -选择一个基准元素,将比基准元素小的元素放在它的左边,将比基准...