不同特征值的特征向量正交,也就是两个不同特征值对应的特征向量相乘等于0,比如你有两个已知特征向量,那么可以列出两个方程从而确定第三个特征向量. 结果一 题目 已知实对称矩阵的特征值(如有三个),知道其中两个的特征向量,怎么求另一个特征值的特征向量? 答案 不同特征值的特征向量正交,也就是两个不同特征值...
实对称矩阵的属于不同特征值的特征向量正交,由此可设另一个特征值的特征向量为 (x1,x2,...)^T, 它与已知特征向量正交, 求出基础解系即可。一般情况下, 解出的基础解系所含向量的个数必须是另一个特征值的重数k,因为实对称矩阵k重特征值必有k个线性无关的特征向量,而与已知向量正交的线性...
不同特征值的特征向量正交,也就是两个不同特征值对应的特征向量相乘等于0,比如你有两个已知特征向量,那么可以列出两个方程从而确定第三个特征向量。实对称矩阵的属于不同特征值的特征向量正交,由此可设另一个特征值的特征向量为 (x1,x2,...)^T, 它与已知特征向量正交, 求出基础解系即可。一般...