然后,它将上一时刻获得的状态信息的后验分布作为新的先验分布,利用贝叶斯定理,建立一个贝叶斯递推过程,从而得到了贝叶斯递推公式,像常用的卡尔曼滤波、扩展卡尔曼滤波、不敏卡尔曼滤波以及粒子滤波都是通过不同模型假设来近似最优贝叶斯滤波得到的。这也是滤波问题的基本思路。所有贝叶斯估计问题的目的都是求解感兴趣参数...
0. 前言前面几篇内容都是介绍的都是卡尔曼滤波在线性系统中的应用,本篇内容开始介绍卡尔曼滤波在非线性系统中的应用,即经典的扩展卡尔曼滤波(EKF,Extended Kalman Filter),并进一步介绍了EKF的改进方法,即…
这两个公式,实际上完成了卡尔曼滤波器的闭环,第一个公式是完成了当前状态向量x的更新,不仅考虑了上一时刻的预测值,也考虑了测量值,和整个系统的噪声,第二个公式根据卡尔曼增益K,更新了系统的不确定度P,用于下一个周期的运算,该公式中的I为与状态向量同维度的单位矩阵。 就此卡尔曼与扩展卡尔曼已经全部讲完,相...
卡尔曼滤波(KF)与扩展卡尔曼(EKF) 卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全包含噪声的测量(英文:measurement)中,估计动态系统的状态,然而简单的卡尔曼滤波必须应用在符合高斯分布的系统中。 百度百科是这样说的,也就是说卡尔曼滤波第一是递归滤波,其次KF用于线性系统。 但经过...
扩展卡尔曼滤波是在卡尔曼滤波基础上引入了更高阶的状态变量,可以处理非线性系统;无迹卡尔曼滤波则是通过将非线性系统线性化,近似为线性系统进行滤波;粒子滤波则是一种基于蒙特卡罗方法的滤波算法,可以处理非线性、非高斯系统。这些扩展算法在不同的应用场景中都具有一定的优势和适用性。
这一章将介绍卡尔曼滤波、扩展卡尔曼滤波以及无迹卡尔曼滤波,并从贝叶斯滤波的角度来进行分析并完成数学推导。如果您对贝叶斯滤波不了解,可以查阅相关书籍或阅读【概率机器人 2 递归状态估计】。 这三种滤波方式都假设状态变量xtxt的置信度bel(xt)bel(xt)为正态分布,这样在计算xtxt的置信度时,只需要计算出其分布的...
想常用的卡尔曼滤波(KF),扩展卡尔曼滤波(EKF),无迹卡尔曼滤波(UKF),粒子滤波(PF)都是通过不同的假设来近似最优贝叶斯滤波得到的。在贝叶斯框架下,通过动态参数的先验概率密度和观测似然函数来求解感兴趣参数的后验概率密度。其在目标定位、跟踪中得到广泛应用。
一、卡尔曼滤波与扩展卡尔曼滤波 卡尔曼滤波(KF)是一种高效的递归滤波器,通过不断迭代的方式对系统的状态进行估计。其核心思想是将状态估计分为预测和更新两个步骤。预测步骤根据上一时刻的状态估计值,预测当前时刻的状态值;更新步骤则根据当前时刻的传感器测量值,对预测值进行修正,得到更为准确的状态估计值。 然而...
卡尔曼滤波(KF)与扩展卡尔曼滤波(EKF)在控制论与信息论的连接上具有卓越的贡献,用于在姿态解算、轨迹规划等领域提供准确状态估计。卡尔曼滤波本质上是参数化的贝叶斯模型,通过预测下一时刻系统状态(先验估计)与测量反馈相结合,获得更为精确的后验估计,核心思想是预测+测量反馈,通过卡尔曼增益实现权重...