编写程序,使用k-means聚类方法对已知数据进行聚类,然后对未知样本进行分类。数据自己进行模拟生成,要求为整数,样本个数至少为 100个,类别作为输入参数。 k-means 算法的基本思想:以空间k个点为中心进行聚类,对靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。最终的k各聚类具有...
# k-means聚类 #将原始数据做归一化处理 data=whiten(points) #使用kmeans函数进行聚类,输入第一维为数据,第二维为聚类个数k. #有些时候我们可能不知道最终究竟聚成多少类,一个办法是用层次聚类的结果进行初始化.当然也可以直接输入某个数值. #k-means最后输出的结果其实是两维的,第一维是聚类中心,第二维是...
使⽤k-means聚类算法对多维属性数据进⾏分类数据形式如下:前期数据整合:import pandas as pd import scipy import scipy.cluster.hierarchy as sch from scipy.cluster.vq import vq,kmeans,whiten import numpy as np import matplotlib.pylab as plt df1 = pd.read_csv(r"D:\01RiverPro\01DATA\01Headwater...
# k-means聚类 #将原始数据做归一化处理 data=whiten(points) #使用kmeans函数进行聚类,输入第一维为数据,第二维为聚类个数k. #有些时候我们可能不知道最终究竟聚成多少类,一个办法是用层次聚类的结果进行初始化.当然也可以直接输入某个数值. #k-means最后输出的结果其实是两维的,第一维是聚类中心,第二维是...