实现思路是使用K-means算法通过高频词对文本内容进行聚类,K-means算法实现原理简单易于理解,缺点是词与词之间的顺序性和相互关系不能在分类中得到体现。实现步骤如下: 使用jieba对文本内容进行分词处理; 去掉停用词; 使用TF-IDF算法将上一步过滤后的分词列表转换成矩阵形式; 使用K-means聚类算法对矩阵计算相似性; 获...
1、使用 K-means 模型进行聚类,尝试使用不同的类别个数 K,并分析聚类结果。 2、按照 8:2 的比例随机将数据划分为训练集和测试集,至少尝试 3 个不同的 K 值,并画出不同 K 下 的聚类结果,及不同模型在训练集和测试集上的损失。对结果进行讨论,发现能解释数据的最好的 K 值。 二、算法原理 首先...
关于opencv下的kmean算法,函数为cv2.kmeans() 函数的格式为:kmeans(data, K, bestLabels, criteria, attempts, flags) data: 分类数据,最好是np.float32的数据,每个特征放一列。之所以是np.float32原因是这种数据类型运算速度快,如果是uint型数据将会很慢。 K: 分类数,opencv2的kmeans分类是需要已知分类数的。
# params: data:样本集, k:聚类簇数 # return:返回是每个簇的簇类中心 def k_means(samples, k): data_number = len(samples) centers_flag = np.zeros((k,)) # 随机在数据中选择k个聚类中心 centers = samples[np.random.choice(data_number, k, replace=False)] print(centers) step = 0 while ...
K-Means 聚类 K-means聚类是一种无监督学习算法,它将未标记的数据集分组到不同的聚类中。“K”是指数据集分组到的预定义聚类的数量。 我们将使用 Python 和 NumPy 实现该算法,以更清楚地理解这些概念。 鉴于: K = 簇数 X = 形状 (m, n) 的训练数据:m 个样本和 n 个特征 ...
任务需求:现有140w个某地区的ip和经纬度的对应表,根据每个ip的/24块进行初步划分,再在每个区域越100-200个点进行细致聚类划分由于k值未知,采用密度的Mean Shift聚类方式。 0#目录: 原理部分 框架资源 实践操作 效果展示 1#原理部分 关于kmeans纯代码实现可以移步之前的一篇 ...
使用Python实现K均值聚类算法 K均值(K-Means)算法是一种常用的聚类算法,它将数据集分成K个簇,每个簇的中心点代表该簇的质心,使得每个样本点到所属簇的质心的距离最小化。在本文中,我们将使用Python来实现一个基本的K均值聚类算法,并介绍其原理和实现过程。
K-means聚类是一种无监督学习算法,用于将数据点划分为K个不同的簇(cluster)。每个簇内的数据点彼此相似,而不同簇之间的数据点则具有较大的差异。K-means算法的目标是最小化每个簇内数据点与其质心(centroid)之间的距离之和。 在Python中,可以使用Sklearn库来实现K-means聚类。以下是使用Sklearn库实现K-means聚类...
本?通过使?真实电商订单数据,采?RFM模型与K-means聚类算法对电商?户按照其价值进?分层。 1. 案例介绍特征说明: InvoiceNo:订单编号,由六位数字组成,退货订单编号开头有字幕’C’ StockCode:产品编号,由五位数字组成 Description:产品描述 Quantity:产品数量,负数表?退货 InvoiceDate:订单?期与时间 UnitPrice :...
实训 使用K-Means聚类算法实现运营商客户价值分析书名: Python数据分析与挖掘实战 作者名: 翟世臣 张良均主编 本章字数: 290字 更新时间: 2025-02-08 17:44:26首页 书籍详情 目录 听书 自动阅读00:01:08 摸鱼模式 加入书架 字号 背景 手机阅读