为二阶常系数齐次线性微分方程,其特征方程为:r²+36=0 有一对共轭复根:r=±6i ∴齐次方程的通解为:y=C1cos6x+C2sin6x 根据常数变易法,设非齐次方程的一个特解为:y*=u1(x)cos6x+u2(x)sin6x 有y*'=-6u1sin6x+6u2cos6x+u1'cos6x+u2'sin6x 根据定理,y=C1cos6x+C2sin6x+y*即为非齐次方...
若求得:y" - p(x)*y' - q(x)*y = 0 的两个线性无关的特u(x),v(x),则非齐次方程:y" - p(x)*y' - q(x)*y = f(x) 的通解公式为:y = C1 * u(x) + C2 * v(x) + ∫ [ u(s)*v(x) - u(x)*v(s) ] / [ u(s)*v ' (x) - v(s) ... 分析总结。 已知二...
齐次微分方程的通解为y=c1y1+c2y2=c1(x-1)+c2(x3-1)而二阶非齐次线性微分方程的通解为y=c1y1+c2y2+y1=1+c1(x-1)+c2(x3-1),其中c1,c2为任意常数可通过对通解微分两次,y=c1+3c2x2,y=6c2x,求得--xa-代入通解并消去任意常数c1,c2,求得微分方程:y=1+(y-yx)(x-1)+(x3-1)即(2x3-3...
二阶非齐次线性微分方程的解法通常有两种方法,一种是积分因子法,一种是拉普拉斯变换法。 积分因子法是确定积分因子的方法。由于其式,解的形式是行列式形式,是一种直观的、简单的方法,当方程实质上是可以进行积分的时候,可以采用这种方法。例如:y''+ p(t) y'+ q(t) y = f(t),其积分因子为M(t) = exp...
解特征方程,得到r的值,那么e^(rx)就称为二阶齐次线性微分方程的一个特解。由于r的根有三种情况,因此对应二阶齐次线性微分方程的通解也有三种情况,分别为:1、当r有两个不相等的实根时:y=C1e^(r1x)+C2e^(r2x);2、当r有两个相等的实根时:y=(C1+C2x)e^(r1x);3、当r有一对共轭复根时:y=e...
方程通解为:y=1+C1(x-1)+C2(x^2-1)。 二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。 若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,...
通解是y=C1(x^2-1)+C2(x-1)+1。解:∵y1=1, y2=x , y3=x^2是某二阶非齐次线性微分方程的三个解 ∴y3-y1=x^2-1和y2-y1=x-1是对应齐次方程线性无关的两个解 则此齐次方程的通解是y=C1(x^2-1)+C2(x-1) (C1,C2是常数)∵y1=1是该方程的一个解 ∴该方程的通解是y=C1...
二阶非齐次线性微分方程的解法如下:二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y*设法分为:如果f(x)=P(x),Pn(x)为n阶多项式。如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。标准形式:y″+py′+qy=0。特征方程:r^2+pr+q=0。通解:两个不等实根y=...
二阶常系数齐次线性微分方程 标准形式 y″+py′+qy=0 特征方程 r^2+pr+q=0 通解 1.两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)2.两根相等的实根:y=(C1+C2x)e^(r1x)3.一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)特解y*设法 1、如果f(x)=P(...
二阶常系数非齐次线性微分方程通解公式:y'+py'+qy=f(x)。其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程...