意思是函数导数不存在的地方。如果函数不连续(间断点,或者垂直渐近线),那么那个地方就是不可导的,因为本身就不在函数的定义域内。函数可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。 共有四种情况: 1、无定义的点,没有导数存在,例如分母为0的点;[无定义] 2、不连续的点,或称为离散点,导数不...
不可导的条件是 1、在X点处没定义。2、有定义,但极限不存在。(不可导)在X处不可导,有两种情况,一是导数为无穷,如Y=tanX。二是如Y=|X|型的,在0点不可导。又函数f(x)在x=a处可导,所以肯定是第二种,即f(a)=0。但是如Y=X^3曲线的情况,在Y轴负向的就要翻上去,之后势必f'(a)...
1、函数在该点不连续,且该点是函数的第二类间断点。如y=tgx,在x=π/2处不可导。2、函数在该点连续,但在该点的左右导数不相等。如Y=|X|,在x=0处连续,在x处的左导数为-1,右导数为1,不相等,函数在x=0不可导。。不可导函数:定义:一类处处连续而处处不可导的实值函数。条件:连续...
不可导是什么意思?不可导指的是函数在某一点的导数不存在。如果函数在某个点处不连续,那么该点就是不可导的,因为不连续点不在函数的定义域内。函数不可导的四种情况如下:1. 无定义点:没有导数存在的点。2. 不连续点:在函数定义域内的离散点,导数不存在。3. 不光滑点:连续但尖锐的点,左右...
函数在某一点不可导,意味着该函数在该点的导数不存在。并不是所有的函数都有导数,有些函数在某一点或者整个定义域内都不可导。如果一个函数在某一点导数存在,我们称该函数在该点可导;反之,则称为不可导,即导数不存在。对于连续性和可导性的关系,可导的函数一定连续,而不连续的函数一定不可导。...
条件:1)若f(x)在x0处连续,则当a趋向于0时,[f(x+a)-f(x)]/a存在极限,则称f(x)在x0处可导. (2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导. 不连续的函数肯定是不可导的. 还有就是函数虽然连续,但是在某个点的左导数和右导数不相等.关于左导数和右导数的问题就要参...
如何判断函数是可导的还是不可导的?判断函数是否可导如下:1、首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f‘(x0+),只有以
1、可导函数:若其在定义域中每一点导数存在,则实变量函数是可导函数。2、不可导函数:其在定义域中有一点导数不存在,则实变量函数是不可导函数。二、证明过程不同 1、可导函数:如果f是在x0处可导的函数,则f一定在x0处连续,特别地,任何可导函数一定在其定义域内每一点都连续。反过来并不一定...
1、可导函数。定义:在微积分学中,实变函数在定义域的每一点上都是导数。直观地说,函数图像在其定义域中的每个点都相对平滑,并且不包含任何尖点或断点。2、条件:如果f是在x0处可导的函数,则f一定在x0处连续,特别是,任何可微函数在其定义域的每一点上都必须是连续的。相反,这不一定。事实上...
1、函数在定义域中一点可导需要一定的条件:只有左右导数存在且相等,并且在该点连续,才能证明该点可导。2、可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。3、单侧导数:极限 存在的充要条件是左极限 和右极限 存在并相等,我们称这两个极限值分别为函数在 点的左导数和右导数...