鸡兔同笼数学问题 1.鸡和兔共49只,一共有100条腿,问鸡和兔各有多少只?答案:1.假设全是兔子,则鸡就有:(49×4﹣100)÷(4﹣2),=(196﹣100)÷2,=96÷2,=48(只);所以兔有49﹣48=1(只);答:鸡有48只,兔子有1只 2.一份试卷共有25道题,每道题都给出了4个答案,其中只有一个
1、鸡兔同笼,兔的数量是鸡的2倍,腿和为100条,鸡和兔分别有多少只? 分析:鸡和兔的数量存在倍数关系,按照兔的数量是鸡的2倍,可以用分组法。 把2只兔和1只鸡分成一组时,兔的数量是鸡的2倍。 画图: 解答:每组中的鸡兔腿和...
假如每只鸡抬起1只脚、每只免抬起2只脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。
3. 吹哨法:吹哨法是一种比较快速的方法,其基本思想是让所有兔子都前脚站立,后脚抬起来,那么每只兔子就剩下两只脚了。此时如果给每只兔子吹一声哨子,那么兔子将都举起后脚,于是看到的地上的脚的总数就是兔子的数量。因为鸡的脚数是和头数相等的,所以剩下的脚的总数就是鸡的数量。以上是解决鸡兔同笼问...
在鸡兔同笼解题方法中,最常用也是最好用的方法就是假设法。例1:王明家养鸡和兔共13只,这些鸡和兔共用36只脚,那么,鸡和兔各有几只?解:假设这13只全部是兔,那么,脚的只数是4×13=52只。比实际上多了52-36=16只脚,因为把一只鸡看成一只兔,就多出4-2=2只脚。思考:一只鸡多出2只脚,...
鸡兔同笼问题是一个经典的数学问题,可以利用代数方程组、穷举法、递归、假设法、抬腿法等不同的方法来解决。1. 代数方程组法:设鸡的数量为x,兔的数量为y,则可以建立以下两个方程:x + y = n (总动物数量为n);2x + 4y = m (总腿的数量为m)解这个方程组即可得到鸡和兔的数量。2. 穷举法:从...
其实鸡兔同笼是一类问题,研究鸡兔同笼的价值就在于建立解决此类问题的一种方法、模型!只要有了这种模型的意识,在解决问题时就能够举一反三,触类旁通了。题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)解法一:列表法 如果二年级小...
"鸡兔同笼"是一个经典的数学问题,经常出现在小学奥数中。以下提供五种解决此问题的方法:列表法:逐一列出所有可能的鸡和兔的数量组合,然后计算它们的总脚数,直到找到与题目给出的脚数相匹配的一组为止。砍足法:假如把每只鸡砍掉1只脚、每只兔砍掉2只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“...
如果这13只全部是鸡,一共有13×2=26条腿,少了36—26=10条腿,所以兔子有10÷2=5只。鸡有13—5=8只。解:36+42=78(只)78÷(4+2)=13(只)36—13×2=10(条)10÷(4—2)=5(只)13—5=8(只)答:兔有5只,鸡有8只。怎么样?这3道鸡兔同笼问题是不是很有分量?你还见过哪些有...