从融合方法来看,传感器的组合主要包括radar-camera(RC)[19]、[41]、camera-lidar(CL)[42]和radar-camera-lidar[16]。一些研究将车辆位置和地图集成到AD系统中,这使得车道水平定位成为可能[97]。此外,V2X传感器将附近的物体添加到地图实时中,这降低了车辆的动态信息的比例[43]。根据MSHIF处理中融合信息的不同形式...
因此,本文中的条件是在图像的监督下从LidarpointCloud构建充满活力的语义图像,并通过KITTI数据集验证实时车辆检测的有效性。类似地,参考文献[101]中提出了一种基于激光雷达的特征学习框架,该框架取代了传统的基于几何匹配的特征学习架构。 自动驾驶过程中的多源异构像素级融合通常利用雷达和激光雷达或生成的图像的可分辨单...
因此,本文中的条件是在图像的监督下从LidarpointCloud构建充满活力的语义图像,并通过KITTI数据集验证实时车辆检测的有效性。类似地,参考文献[101]中提出了一种基于激光雷达的特征学习框架,该框架取代了传统的基于几何匹配的特征学习架构。 自动驾驶过程中的多源异构像素级融合通常利用雷达和激光雷达或生成的图像的可分辨单...
从融合方法来看,传感器的组合主要包括radar-camera(RC)[19]、[41]、camera-lidar(CL)[42]和radar-camera-lidar[16]。一些研究将车辆位置和地图集成到AD系统中,这使得车道水平定位成为可能[97]。此外,V2X传感器将附近的物体添加到地图实...
从融合方法来看,传感器的组合主要包括radar-camera(RC)[19]、[41]、camera-lidar(CL)[42]和radar-camera-lidar[16]。一些研究将车辆位置和地图集成到AD系统中,这使得车道水平定位成为可能[97]。此外,V2X传感器将附近的物体添加到地图实时中,这降低了车辆的动态信息的比例[43]。根据MSHIF处理中融合信息的不同形式...
自动驾驶过程中的多源异构像素级融合通常利用雷达和激光雷达或生成的图像的可分辨单元,然后从融合数据中提取环境特征和目标参数,用于进一步决策。FSBDU直接合并数据,无需深度信息提取[103]。虽然可以最大程度地融合多源数据,但数据之间存在冗余,导致融合效率低。
从融合方法来看,传感器的组合主要包括radar-camera(RC)[19]、[41]、camera-lidar(CL)[42]和radar-camera-lidar[16]。一些研究将车辆位置和地图集成到AD系统中,这使得车道水平定位成为可能[97]。此外,V2X传感器将附近的物体添加到地图实时中,这降低了车辆的动态信息的比例[43]。
(Camera/Lidar/Radar等多源异构数据) 计算机视觉life”,选择“星标” 快速获得最新干货 本文转载自自动驾驶之心 自动驾驶中的多传感器融合 原文:Multi-Sensor Fusion in Automated Driving: A Survey 自动驾驶正成为影响未来行业的关键技术,传感器是自动驾驶系统中感知外部世界的关键,其协作性能直接决定自动驾驶车辆的安全...
(Camera/Lidar/Radar等多源异构数据) 计算机视觉life”,选择“星标” 快速获得最新干货 本文转载自自动驾驶之心 自动驾驶中的多传感器融合 原文:Multi-Sensor Fusion in Automated Driving: A Survey 自动驾驶正成为影响未来行业的关键技术,传感器是自动驾驶系统中感知外部世界的关键,其协作性能直接决定自动驾驶车辆的安全...
(Camera/Lidar/Radar等多源异构数据) 计算机视觉life”,选择“星标” 快速获得最新干货 本文转载自自动驾驶之心 自动驾驶中的多传感器融合 原文:Multi-Sensor Fusion in Automated Driving: A Survey 自动驾驶正成为影响未来行业的关键技术,传感器是自动驾驶系统中感知外部世界的关键,其协作性能直接决定自动驾驶车辆的安全...