定理:椭圆曲线 E/\mathbb F_{q}( q=p^n )超奇异当且仅当对于 q 次Frobenius映射 \phi_q 有tr(\phi_q)\equiv 0\mod p。证明: \Rightarrow :椭圆曲线 E/\mathbb F_{q} 超奇异,故 \ker [p]=\ker(\phi_p\hat\phi_p)=\{O\} ,因此 \ker\hat\phi_p=\{O\} 且\hat
2002 超椭圆曲线密码体制的研究与进展 张方国 ,王育民 ( 西安电子科技大学 ISN 国家重点实验室 ,陕西西安 710071) 摘 要 : 椭圆曲线密码是 目前最流行的公钥密码体制 ,超椭圆曲线密码作为椭圆曲线密码的推广 ,近几年对它 的研究也日益被人们重视. 在该文中 ,作者就 目前国内外对超椭圆曲线密码体制的研究现状作...
第一章首先介绍了计算机安全的背景,包括PKI基础设施和公钥密码的发展,接着详细阐述了超椭圆曲线密码体制的研究背景和意义。书中第二章深入讲解了算法数论基础,涉及超椭圆曲线的定义、性质以及相关概念,如除子和Jacobian商群等。第三章到第六章分别探讨了超椭圆曲线密码体制的理论研究,核心算法实现,以及...
超椭圆曲线密码协议的研究与应用 手两要 作为椭圆曲线密码体制(ECC)的推广,NealKoblitz在1989年提出了超椭圆曲线 密码体制(HCC)。超椭圆曲线密码体制是基于有限域上的超椭圆曲线Jacobian群上离 散对数问题的。相比于ECC和其他公钥密码体制而言,HCC有着不可替代的优势, ...
代数几何攻击和代数数论攻击,展示了椭圆曲线公钥密码面临的挑战和可能的破解策略。最后,章节专门讨论了椭圆曲线的倍点计算,包括基域选择、点的表示与运算、倍点运算方法以及Frobenius展开等,为实际应用提供了技术支持。全书内容丰富,为研究者和实践者提供了深入理解和使用椭圆与超椭圆曲线密码的坚实基础。
格为2的超椭圆曲线除子标量乘算法中,得到了一个高效的抗简单能量分析攻 击的标量乘算法。该算法比总是倍点加标量乘算法快24%一26%,比Mishra的 两种标量乘算法分别快33%一35%和6%一7%。我们给出的这个求逆算法可以在 任何需要求多个元素逆的应用环境中使用。 关键词:超椭圆曲线密码体制标量乘双基链退化除子...
本书介绍了近几年来作者在超椭圆曲线密码体制的理论及其实现上的成果。全书共分八章,主要介绍了超椭圆曲线密码体制的算法数论基础、超椭圆曲线的密码学体系、除子群运算的核心算法、从ECC的技术标准到超椭圆曲线密码体制的实现技术,同时也对超椭圆曲线密码体制与ECC及RSA在安全强度、复杂度以及实现上进行了比较。 本...
《超椭圆曲线密码体制的理论与实现》是由经济管理出版社出版的第一版书籍,发行日期为2006年7月1日。这本书采用32开的平装格式,方便携带和阅读,总共有176页的内容,深入浅出地探讨了该领域的理论和实践应用。本书的ISBN号为7802076234,便于读者在图书市场中准确查找。此外,它还配备了一个独特的条形码...
《椭圆与超椭圆曲线公钥密码的理论与实现》论述了椭圆与超椭圆曲线公钥密码学的基本理论及实现,其中包括:椭圆曲线公钥密码体制介绍,椭圆和超椭圆曲线的基本理论,定义在有限域上椭圆和超椭圆曲线的有理点的计数,椭圆和超椭圆曲线上的离散对数,椭圆和超椭圆曲线离散对数的初等攻击方法、指标攻击方法、代数几何攻击方法及代...
一种超椭圆曲线密码体制的快速求阶算法 维普资讯 http://www.cqvip.com