通过比较多种物种中相同蛋白质的序列,识别在进化过程中高度保守的氨基酸残基。这些通常是功能性重要的残基,包括结合位点。模体搜索(Motif search)识别在已知的蛋白质-蛋白质相互作用中出现的短序列模体,并在未知蛋白中搜索这些模体。分子对接 使用计算模拟来预测两个或多个蛋白质结构如何物理上相互作用和结合。这种方法通
根据蛋白质的结构确定蛋白质的功能特性具有挑战性。 2022年5月30日,以色列特拉维夫大学Blavatnik计算机科学学院的Haim J. Wolfson等人在Nat Methods杂志发表文章,提出了一种可解释的深度学习模型,该模型直接从原始数据中学习具有功能的结构基序 (motifs),从而可以将蛋白质结合位点和抗体表位准确地映射到蛋白质结构上。 摘...
识别蛋白质的功能位点,例如蛋白质、肽或其他生物成分的结合位点,对于理解相关的生物过程和药物设计至关重要。然而,现有的基于序列的方法的预测准确性有限,因为它们只考虑序列相邻的上下文特征并且缺乏结构信息。上海交通大学和中山大学的研究人员提出了 DeepProSite,用于利用蛋白质结构和序列信息来识别蛋白质结合位点。De...
近日,清华大学药学院田博学课题组研究提出了一个基于蛋白质语言模型和对比学习的蛋白质-小分子结合位点预测模型(CLAPE-SMB),并整理了蛋白质-小分子结合位点数据集UniProtSMB,发现该模型在UniProtSMB的测试集上达到了0.699的MCC,优于其他模型。与基于结构的预测方法相比,CLAPE-SMB特别适用于缺乏精确实验结构的蛋白...
国际上提出的蛋白质结合位点的预测方法主要包括四大类:基于序列的预测方法、基于结构的预测方法、基于理化...
蛋白质-多肽结合位点的预测在疾病预防和药物研发领域都具有举足轻重的地位,然而现有的预测方法在实际预测时并没有表现出非常好的效果,特别是在敏感度方面甚至还没有达到50%。作者在文章中提出了一种使用CNN框架处理“可视化”蛋白质特征数据来预测蛋白质-多肽结合位点的方法,作者创新性地引入“滑动窗口法”将初始蛋白...
DeepProSite 的研究动机在于蛋白质功能位点(如蛋白质、肽或其他生物组分的结合位点)的识别对理解相关生物过程和药物设计至关重要。 然而,现有基于序列的方法由于只考虑序列相邻的上下文特征且缺乏结构信息,预测准确性有限。 DeepProSite 使用 ESMFold 生成蛋白质结构和预训练语言模型生成序列表示,通过图转换器(Graph Transf...
上海交通大学和中山大学的研究人员提出了 DeepProSite,用于利用蛋白质结构和序列信息来识别蛋白质结合位点。 DeepProSite 首先从 ESMFold 生成蛋白质结构,并从预训练的语言模型生成序列表示。然后,它使用 Graph Transformer 并将结合位点预测制定为图节点分类。 在预测蛋白质-蛋白质/肽结合位点时,DeepProSite 在大多数指...
研究人员首先在PDNA-128测试集上比较ULDNA和9种主流的蛋白质-DNA结合位点预测方法的性能,其中PDNA-128包含了128条在2023年1月以后加入蛋白质结构数据库PDB的蛋白质序列。从表1中可见,ULDNA的MCC (Mathew’s Correlation Coefficient)、A...
上海交通大学和中山大学的研究人员提出了 DeepProSite,用于利用蛋白质结构和序列信息来识别蛋白质结合位点。 DeepProSite 首先从 ESMFold 生成蛋白质结构,并从预训练的语言模型生成序列表示。然后,它使用 Graph Transformer 并将结合位点预测制定为图节点分类。