这是一个开口向上的二次函数 f ( x ) = x 2 f(x)=x^2 f(x)=x2 的函数图像,我们把它比作成一座山,它的最低点就是山底,图中还有一个红点,他表示我们人现在所处的位置,如果用梯度下降的方法,让人下山,那么它的轨迹可以表示成下图: 图浅显易懂,一眼便能看出’下山’轨迹,但是问题来了在算法上我...
线性回归的随机梯度下降 2,随机梯度下降法:在更新参数时都使用一个样本来进行更新。每一次跟新参数都用一个样本,更新很多次。如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将参数迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,...
封装在线性回归算法LinearRegression类中,作为一种拟合方法 deffit_gd(self, X_train, y_train, eta=0.01, n_iters=1e4):"""根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型"""assertX_train.shape[0] ==y_train.shape[0], \"the size of X_train must be equal to the...
前面的文章讲了使用最小二乘法来求线性回归损失函数的最优解,最小二乘法为直接对梯度求导找出极值,为非迭代法;而本篇文章了使用一个新的方法来求损失函数的极值:梯度下降法(Gradient Descendent, GD),梯度下降法为最优化算法通常用于求解函数的极值,梯度下降法为迭代法,给定一个β在梯度下降最快方向调整β,经过N...
线性回归:是一种常用的机器学习模型,主要任务是预测,预测包括分类和回归。 梯度下降:梯度下降就是用来求某个函数最小值时自变量对应取值,该某个函数指的是误差函数,也叫损失函数。损失函数就是一个自变量为算法的参数,函数值为误差值的函数。所以梯度下降就是找让误差值最小时候算法取的参数。