它们的秩相同 两个矩阵可以相互通过初等变换得到 A和B为同型矩阵 矩阵A和B等价,那么B和A也等价(等价性)矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性)矩阵A和B等价,那么IAI=KIBI。(K为非零常数)具有行等价关系的矩阵所对应的线性方程组有相同的解 ...
1 r(A,B)>=r(A+B)r(A,B)>=r(B)>=r(AB)r(AB)与r(A+B)没有直接关系。矩阵B可逆,AB的秩等于A的秩,那么A可逆的充要条件是A可以写成初等阵的乘积。AB等于B左乘初等矩阵,而左乘初等阵就是对B进行初等行变换,所以它的秩不变。而B可逆的充要条件是B可以写成初等阵的乘积,同理秩不变。矩阵的...
AB的秩永远小于等于A的秩和B的秩两者的最小值。秩是线性代数术语。在线性代数中,一个矩阵的秩是其非零子式的最高阶数,一个向量组的秩则是其最大无关组所含的向量个数。在解析几何中,矩阵的秩可用来判断空间中两直线、两平面及直线和平面之间的关系。在控制论中,矩阵的秩可以用来确定线性系统...
AB为A矩阵乘以B矩阵,r(AB)为A乘以B的秩,r(A)为矩阵A的秩,r(B)为矩阵B的秩。min{r(A),r(B)}秩的最小值。r(AB)≤min(r(A),r(B))的意思就是矩阵A乘以矩阵B的秩小于等于A的秩和B的秩中的最小值。原因是因为矩阵的秩只会越乘越小,最大就是A矩阵和B矩阵的最小值。
【答案】:因为AB=BA则(AB)=B'A'=BA=AB即BA为实对称的.其次由于AB都是正定的故存在实可矩逆矩阵PQ使A=P'PB=Q'Q于是AB=P'PQ'Q与QP'PQ'=Q(P'PQ'Q)Q-1=QABQ-1相似从而两者都有相同的特征根.但是QP'PQ'=(PQ')'(PQ')为正定矩阵其特征根都是正实数故AB的特征根都是正实数从而...
矩阵B可逆,AB的秩等于A的秩,那么A可逆的充要条件是A可以写成初等阵的乘积。AB等于B左乘初等矩阵,而左乘初等阵就是对B进行初等行变换,所以它的秩不变。而B可逆的充要条件是B可以写成初等阵的乘积,同理秩不变。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的...
因为AB相当于拿B的行向量线性组合成一个新的向量组,秩就是两个向量组的极大线性无关组的个数。显然,经过线性组合后,极大线性无关组里向量个数不会增加,因此不可能出现r(AB)>r(B)
(2)矩阵A的秩等于矩阵A转置乘矩阵A的秩。证明思路:分别构造构造齐次的线性方程组,Ax=0与A转置乘Ax=0同解。因为可以使用前面一个方程式子推到后面一个方程式,反之,倒过来也成立。两个方程组同解,故秩相等,即得到证明。(3)矩阵A加矩阵B和的秩小于等于矩阵A的秩加矩阵B的秩,即rank(A+B)≤rank(A)+...
是的,矩阵所有特征值的乘积即为矩阵的行列式,只要特征值不等于零,矩阵的行列式就不为零也就是满秩。因此A和B的秩相等且都是3。
相等的话请给证明. 答案 因为(A,B)经过有限次初等列变换可以变为(B,A),即(A,B)~(B,A),故R(A,B)=R(B,A)注:详细证明可以参考线性代数同济大学第五版第67页相关推荐 1大学线代:请问矩阵(A,B)和矩阵(B,A)的秩相等不?相等的话请给证明.反馈 收藏 ...