相似三角形判定定理是几何学中用于判断两个三角形是否相似的基本定理,主要依据三角形的角度相等和边长成比例的特性。以下三种方法最常被使用且被收录进初中数学课本:角角相似(AA),即两角分别相等的两个三角形相似;边角边相似(SAS),即两边对应成比例且夹角相等的两个三角形相似;边边边相似(SSS),即三边成...
相似三角形有四个判定定理,分别是: 1、平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似。 2、两边对应成比例且夹角相等,两个三角形相似。 3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。 4、如果两个三角形的两个角分别对应相等,则有两个三角形相似。
常用的判定定理有以下: 1、如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(SAS) 2、如果两个三角形的三组对应边成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(SSS) 3、两三角形三边对应平...
相似三角形的对应角相等,这是相似定理的基础特性。 相似多边形的对应边成比例,比例关系稳定。若两个三角形的两组对应边的比相等,且夹角相等,则它们相似。全等三角形是相似比为 1 的特殊相似三角形。相似三角形的对应高的比等于相似比。相似三角形的对应中线的比等于相似比。相似三角形的对应角平分线的比等于相似比...
的距离之比称作它们的位似比。位似比和相似比的数值相等。两个位似三角形内部的任意对应点到点 的距离之比也等于位似比,且它们的连线所在直线也过点 。 判定 判定定理1(AA)若两三角形有两组内角对应相等,则这两个三角形相似。 判定定理2(SAS)若两三角形有两组对应边的比例相等,且它们所夹的内角相等,...
相似第一定理:两个相似的系统,单值条件相同,其相似判据的数值也相同。相似第二定理:当一现象由n个物理量的函数关系来表示,且这些物理量中含有m种基本量纲时,则能得到(n-m)个相似判据。相似第三定理:凡具有同一特性的现象,当单值条件(系统的几何性质、介质的物理性质、起始条件和边界条件等)彼此相似,且由...
相似三角形的判定定理: 1. 两边成比例且夹角相等 当两个三角形的对应两边长度成比例,并且这两个边之间的夹角也相等时,这两个三角形相似。这是基于相似三角形的定义和性质得出的基本判定定理。简单地说,如果两个三角形的一对对应边成比例,并且这对边的夹角也相同,那么这两个三角形就是相似的。 2. 三边成比例...
全等,相似三角形定理证明 相关知识点: 试题来源: 解析 相似:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;(AA)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(SAS)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(SSS)对应角...
1) AA相似定理:如果两个三角形的两个角分别相等,则它们相似。 2) SAS相似定理:如果两个三角形的一个角相等,且它们的两边分别成比例,则它们相似。 3) SSS相似定理:如果两个三角形的三条边分别成比例,则它们相似。 4) 已知三角形的一个角和该角的对边边长相等,则这两个三角形相似。 5) 已知三角形的一个...