再确定万位数字:由于数字不能重复,个位已经选了一个数字,万位不能为0(因为是五位数),所以万位可以从剩下的4个非零数字(除了个位已选的奇数和0)中选,有4种选法。确定千位数字,此时已经用掉了2个数字,那么千位可以从剩下的4个数字(包括0和除了个位、万位已选的数字)中选,有4种选法。确定百位数字,已经...
解析 先排个位,有C^1_3种排法;再排万位,有C^1_4种排法,最后排其它三个数位,有A^3_4种排法,由分步乘法计数原理得:可组成没有重复数字的五位奇数C^1_3C^1_4A^3_4=3* 4* 24=288(个)综上所述,结论是:可组成288个没有重复数字的五位奇数...
由0,1,2,3,4,5可以组成288个没有重复数字的五位奇数。以下是详细说明: 五位数的结构: 一个五位数由万位、千位、百位、十位和个位组成。 奇数的条件: 个位数字必须是奇数(1, 3, 5)。 没有重复数字的条件: 每一位上的数字都不能重复。 可选数字: 可用数字为0, 1, 2, 3, 4, 5。 分步计算: 选择...
用0,1,2,3,4,5这六个数字,能组成没有重复数字的五位奇数的个数为___(用数字作答) 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 根据题意,末位数字可以为1、3、5,有A31种取法,首位数字不能为0,有A41种取法,再选3个数字,排在中间,有A43种排法,则五位奇数共有A31A41A43=...
【题目】由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数? 相关知识点: 试题来源: 解析 【解析】 先排个位数,1,3,5中的一个,有3种, 因为0不能在首位,再排首位有4种, 最后排其它有A3=24, 根据分步计数原理得,五位奇数有3×4×24=28 8; 故答案为: 288 ...
根据题意,首先分析末位数字,易得末位数字可以为1、3、5,可得其取法数目,其首位数字不能为0,可得其取法数目,再选3个数字,排在中间,有种排法,由分步计数原理,计算可得答案 [详解]根据题意,末位数字可以为1、3、5,有种取法,首位数字不能为0,有种取法,再选 3个数字,排在中间,有种排法,则五位奇数共有,...
由0,1,2,3,4,5可以组成288种没有重复数字的五位奇数。1,保证是奇数,末位必须是1,3,5中的一个,即C31;2,首位不能是0,则首位是剩下四个数中的一个,即C41;3,此时首位末位确定了,则还需要选择三个数,即C43;4,由于首位末位确定了,另外三位可以位置不确定,运用分步乘法原理即C31C41C43...
4乘4乘3乘2乘3
由0,1,2,3,4,5这6个数字可以组成五位没有重复数字的奇数个数为( )A.288B.360C.480D.600的答案是什么.用刷刷题APP,拍照搜索答疑.刷刷题(shuashuati.com)是专业的大学职业搜题找答案,刷题练习的工具.一键将文档转化为在线题库手机刷题,以提高学习效率,是学习的生产力工具