这些参数对滤波性能有显著影响,需要基于实际系统特性和测量不确定度进行精确标定。其中,Q矩阵表征系统模型的不确定度,R矩阵则反映测量系统的不确定度特性。 性能评估通常采用均方根误差(RMSE)等定量指标,用于量化估计状态与真实状态之间的偏差。RMSE提供了评估滤波精度和比较不同实现方案的标准化方法,有助于工程人员优化...
这个参数被估计为0.0053,但是高斯模型和泊松模型之间σ 2 η的实际值不能直接比较,因为不同模型对µt的解释不同。泊松模型的斜率项估计为0.022,标准误差为1.4×10-4,对应于死亡人数每年增加2.3%。 图2显示了以高斯过程(蓝色)和泊松过程(红色)为模型(每10万人的死亡人数)的平滑估计。 任意的状态空间模型 通过结...
这个参数被估计为0.0053,但是高斯模型和泊松模型之间σ 2 η的实际值不能直接比较,因为不同模型对µt的解释不同。泊松模型的斜率项估计为0.022,标准误差为1.4×10-4,对应于死亡人数每年增加2.3%。 图2显示了以高斯过程(蓝色)和泊松过程(红色)为模型(每10万人的死亡人数)的平滑估计。 任意的状态空间模型 通过结...
这个参数被估计为0.0053,但是高斯模型和泊松模型之间σ 2 η的实际值不能直接比较,因为不同模型对µt的解释不同。泊松模型的斜率项估计为0.022,标准误差为1.4×10-4,对应于死亡人数每年增加2.3%。 图2显示了以高斯过程(蓝色)和泊松过程(红色)为模型(每10万人的死亡人数)的平滑估计。 任意的状态空间模型 通过结...
状态空间模型的参数估计通常工作量很大,因为似然面包含多个最大值,从而使优化问题高度依赖于初始值。通常情况下,未知参数与未观察到的潜在状态有关,如本例中的协方差矩阵,几乎没有先验知识。 因此,要猜出好的初始值是很有挑战性的,特别是在更复杂的环境中。因此,在可以合理地确定找到适当的最优值之前,建议使用多...
第一个参数是定义观测值的公式(左侧~)和状态方程的结构(右侧)。这里死亡人数/人口是一个单变量时间序列,状态方程是用矩阵来定义的,为了保持模型的可识别性,截距项用-1省略。观测水平方差通过参数H定义,NA值代表未知方差参数σ 2和σ 2 η。估计之后,进行过滤和平滑递归。
第一个参数是定义观测值的公式(左侧~)和状态方程的结构(右侧)。这里死亡人数/人口是一个单变量时间序列,状态方程是用矩阵来定义的,为了保持模型的可识别性,截距项用-1省略。观测水平方差通过参数H定义,NA值代表未知方差参数σ 2和σ 2 η。估计之后,进行过滤和平滑递归。
卡尔曼滤波是一种针对受高斯噪声影响的线性系统的递归状态估计算法。该算法通过严格的数学推导,将模型预测与传感器测量进行最优融合,实现状态估计。其核心是一个两阶段的迭代过程,随着新数据的获取不断优化估计结果。 预测阶段(时间更新)利用系统模型对下一状态及其不确定度协方差进行预测。该阶段基于已知的系统动力学模...
其中,参数估计采用了普通最小二乘(Ordinary Least Square,OLS)估计和广义系统矩估计法(System Generalized Method of Moments,SGMM),并对得到的估计结果进行了比较。结果表明,随着预测时间的延续,动态指标的平均均方根误差显著低于静态指标。...