深度学习(Deep Learning)系列一:神经网络简介 Kaway...发表于Kaway... 详解深度学习 深度学习是机器学习的一个子集。为了更好地理解这种关系,我们可以将它们放在人工智能(AI)的大框架中来看。 人工智能(AI):这是最广泛的概念,指的是使机器能够模拟人类智能行为的技术… 爽姐聊AI发表于AI编程及... 深度学习(...
是机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI,Artificial Intelligence)。 深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力...
深度学习是机器学习的一个子集,与众不同之处在于,DL算法可以自动从图像、视频或文本等数据中学习表征,无需引入人类领域的知识。深度学习中的“深度”一词表示用于识别数据模式的多层算法或神经网络。DL 高度灵活的架构可以直接从原始数据中学习,这类似于人脑的运作方式,获得更多数据后,其预测准确度也将随之提升。 此...
双向深度网络(bi-directionaldeep networks, BDDN),通过叠加多个编码器层和解码器层构成(每层可能是单独的编码过程或解码过程,也可能既包含编码过程也包含解码过程),如深度玻尔兹曼机(deep Boltzmann machines, DBM)、深度信念网络(deep beliefnetworks, DBN)、栈式自编码器(stacked auto-encoders, SAE)等。 1、 前...
Nielsen (2015) 用代码和例子描述了神经网络的细节。他还在一定程度上讨论了深度神经网络和深度学习。 Schmidhuber (2014) 讨论了基于时间序列的神经网络、采用机器学习方法进行分类,以及在神经网络中使用深度学习的历史和进展。 Deng 和 Yu (2014) 描述了深度学习类别和技术,以及 DL 在几个领域的应用。
基于第一步得到的各层参数进一步fine-tune整个多层模型的参数,这一步是一个有监督训练过程;第一步类似神经网络的随机初始化初值过程,由于DL的第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果;所以deep learning效果好很大程度上归功于第一步的feature lear...
深度学习是机器学习的一个子集,常用于自然语言处理,计算机视觉等领域,与众不同之处在于,DL(Deep Learning )算法可以自动从图像、视频或文本等数据中学习数据特征。DL可以直接从数据中学习,这比较类似于人脑的运行方式,获得更多数据后,准确度也会越来越高。TIDL(TI Deep Learning Library) 是TI平台基于深度学习算法的...
深度学习是机器学习的一个子集,与众不同之处在于,DL 算法可以自动从图像、视频或文本等数据中学习表征,无需引入人类领域的知识。深度学习中的“深度”一词表示用于识别数据模式的多层算法或神经网络。DL 高度灵活的架构可以直接从原始数据中学习,这类似于人脑的运作方式,获得更多数据后,其预测准确度也将随之提升。
Deep Learning 深度学习 (一) 在 Deep Learning (简称 DL) 中,我们经常会提到一个叫做 Model 的东西,其实他就是一个函数的集合 (fu...