Actor-Critic 算法和之前 经典的 policy gradient 的算法相比多了两个步骤就是 第2行和第3行,其余部分 几乎和 policy gradient 方法是一样的。 首先因为在这里我们使用的是 advantage 来更新 policy,所以我们就必须计算出 advantage,而计算 advantage 前面我们已经推导过了 就是用 value function 来近似计算 advantag...
1. Actor-Critic 我们知道,基于值的方法Value-based通过神经网络来预测动作的Q值,其目标函数是TD误差;基于策略的方法Policy-based(没有基准函数的版本)直接通过神经网络基于输入的状态预测动作的概率分布,即直接优化策略,其目标函数累积收益加权的交叉熵。Actor-Critic将两者进行了融合,也就是说,Actor-Critic是一种既基...
Actor-Critic算法分为两部分,我们分开来看actor的前身是policy gradient他可以轻松地在连续动作空间内选择合适的动作,value-based的Qlearning做这件事就会因为空间过大而爆炸,但是又因为Actor是基于回合更新的所以学习效率比较慢,这时候我们发现可以使用一个value-based的算法作为Critic就可以实现单步更新。这样两种算法相互补...
2.2 Actor-Critic算法流程 评估点基于TD误差,Critic使用神经网络来计算TD误差并更新网络参数,Actor也使用神经网络来更新网络参数 输入:迭代轮数T,状态特征维度n,动作集A,步长$\alpha$,$\beta$,衰减因子$\gamma$,探索率$\epsilon$, Critic网络结构和Actor网络结构。 输出:Actor网络参数$\theta$,Critic网络参数$w$ ...
强化学习基础篇3:DQN、Actor-Critic详细讲解 1.DQN详解 1.1 DQN网络概述及其创新点 在之前的内容中,我们讲解了Q-learning和Sarsa算法。在这两个算法中,需要用一个Q表格来记录不同状态动作对应的价值,即一个大小为 $状态个数,动作个数$ 的二维数组。在一些简单的强化学习环境中,比如迷宫游戏中(图1a),迷宫大小为...
强化学习系列(六)--Actor-Critic实例二 原创 修改于2024-05-09 21:15:29 1.5K01 代码可运行 文章被收录于专栏:强化学习系列 在上文中我们介绍了Acort-Critic的一种实现方式,本文主要介绍AC网络的一些优化算法。 再次回顾和介绍一些基础概念和算法。先看下时序差分算法和优势函数的概念。
一、Actor-Critic 介绍 1、引入 Actor-Critic 我们还是从上篇强化学习——REINFORCE Algorithm推导出的目标函数的梯度说起: 其中 就表示当前采取的行为,到episode结束一共能获得的奖励。对于 是使用 MC 采样得到的 sample,只有到达最终状态才能逆序计算 ...
梯度更新部分中,∇θlogπθ(st,at)∇θlogπθ(st,at)是我们的分值函数,不用动,要变成Actor的话改动的是vtvt,这块不能再使用蒙特卡罗法来得到,而应该从Critic得到。 而对于Critic来说,这块是新的,不过我们完全可以参考之前DQN的做法,即用一个Q网络来做为Critic, 这个Q网络的输入可以是状态,而输出是每个...
Actor-Critic模型在强化学习中的应用 Actor-Critic模型在强化学习中有广泛的应用。例如,在机器人控制和游戏玩法等领域,Actor-Critic模型可以通过与环境的交互来学习最优策略,实现自主决策和智能行为。此外,在金融交易和资源管理等领域,Actor-Critic模型也可以用于优化决策策略,提高系统的效益和性能。综上所述,Actor-...
Actor-Critic 是Q-learning 和 Policy Gradient 的结合。 为了导出 Actor-Critic 算法,必须先了解Policy Gradient 算法是如何一步步优化策略的。 如上图所示, 最简单的Policy Gradient 算法要优化的函数如下: L=∑logπθ(st,at)vt 其中vt要根据 Monte-Carlo 算法估计,故又可以写成: ...