并行化在 actor-critic 算法中也很重要,对于 synchronized parellel actor-critic 算法来说我们采用的是相同的 policy 但是有多个 simulator 来运行数据,对应到算法就是我们并行执行的是 step 2-step 5,之所以做并行的原因主要不是为了加速,而是因为在监督学习的过程中我们往往在一个batch的更新中需要多个样本(大于1)...
这个方法可以用于在线版本,即得到一个状态-动作-回报对以后就可以更新,但通常来说不推荐使用On-line版本的AC算法,因为通常来说很难训练,即使在监督学习中我们也不推荐一个样本一个样本的更新。 Actor与Critic共享权重 在实际应用Actor-Critic算法的过程中,通常而言我们会使用两个网络:一个策略网络输出策略、一个值函...
Actor-Critic算法分为两部分,我们分开来看actor的前身是policy gradient他可以轻松地在连续动作空间内选择合适的动作,value-based的Qlearning做这件事就会因为空间过大而爆炸,但是又因为Actor是基于回合更新的所以学习效率比较慢,这时候我们发现可以使用一个value-based的算法作为Critic就可以实现单步更新。这样两种算法相互补...
Actor-Critic 是价值学习和策略学习的结合。Actor 是策略网络,用来控制agent运动,可以看做是运动员。Critic 是价值网络,用来给动作打分,像是裁判。 4. Actor-Critic 4.1 价值网络与策略网络构建 a. 原理介绍 状态价值函数: Vπ(s)=∑aπ(a|s)⋅Qπ(s,a)Vπ(s)=∑aπ(a|s)⋅Qπ(s,a) (离散情况...
假设我们用网络参数化函数Vθ(s)来估计策略π对应的值函数,认为Vθ(s)是Vπ(s)的近似函数,就可以用时序差分误差作为Vθ(s)的学习目标(采取动作后的即可回报+采取动作后的状态值函数-当前时刻的状态值函数),也就是td_error。 δθ = Rt + γ
一、Actor-Critic 介绍 1、引入 Actor-Critic 我们还是从上篇强化学习——REINFORCE Algorithm推导出的目标函数的梯度说起: 其中 就表示当前采取的行为,到episode结束一共能获得的奖励。对于 是使用 MC 采样得到的 sample,只有到达最终状态才能逆序计算 ...
强化学习基础篇3:DQN、Actor-Critic详细讲解 1.DQN详解 1.1 DQN网络概述及其创新点 在之前的内容中,我们讲解了Q-learning和Sarsa算法。在这两个算法中,需要用一个Q表格来记录不同状态动作对应的价值,即一个大小为 $状态个数,动作个数$ 的二维数组。在一些简单的强化学习环境中,比如迷宫游戏中(图1a),迷宫大小为...
强化学习基础篇[3]:DQN、Actor-Critic详细讲解 1.DQN详解 1.1 DQN网络概述及其创新点 在之前的内容中,我们讲解了Q-learning和Sarsa算法。在这两个算法中,需要用一个Q表格来记录不同状态动作对应的价值,即一个大小为 $[状态个数,动作个数]$ 的二维数组。在一些简单的强化学习环境中,比如迷宫游戏中(图1a),迷宫...
强化学习基础篇[3]:DQN、Actor-Critic详细讲解 1.DQN详解 1.1 DQN网络概述及其创新点 在之前的内容中,我们讲解了Q-learning和Sarsa算法。在这两个算法中,需要用一个Q表格来记录不同状态动作对应的价值,即一个大小为 [状态个数,动作个数][状态个数,动作个数][状态个数,动作个数] 的二维数组。在一些简单的...
Actor-Critic模型的基本原理 Actor-Critic模型是一种基于值函数和策略函数的强化学习算法。其中,Actor负责学习策略函数,根据当前状态选择动作;Critic负责学习值函数,评估当前状态的价值。Actor-Critic模型通过策略评估和策略改进两个步骤来不断优化策略。Actor-Critic模型的算法 Actor-Critic模型的算法包括两个主要步骤:...